Deep learning in frequency domain for inverse identification of nonhomogeneous material properties

鉴定(生物学) 频域 反向 领域(数学分析) 材料科学 牙石(牙科) 应用数学 数学 数学分析 计算机科学 几何学 植物 医学 生物 牙科
作者
Yizhe Liu,Yuli Chen,Bin Ding
出处
期刊:Journal of The Mechanics and Physics of Solids [Elsevier]
卷期号:168: 105043-105043 被引量:6
标识
DOI:10.1016/j.jmps.2022.105043
摘要

The inverse identification of nonhomogeneous material properties from measured displacement/strain fields, especially when noise exists, is crucial for both engineering and material science. The conventional physics-based solutions either require time-consuming iterative calculations, or are sensitive to noise. While the new machine learning methods either need excess data for high-dimensional matchups, or mainly apply to case-by-case analyses with informed physics. In this paper, to solve the complex matchup between the measured displacement/strain fields and the randomly distributed modulus field rapidly and robustly, a novel method of deep learning in frequency domain is proposed, with discrete cosine transform (DCT) to achieve frequency domain transformation as well as dimensionality reduction and convolutional neural network (CNN) to implement learning in frequency domain. Results show that our method not only has high prediction accuracy on zero-noise samples (with L 1 -error of 4.249%) but also presents great robustness to noise (with L 1 -error of 5.085% on large-noise samples). Besides, by our method, only one-time training on a dataset with mixed noise is basically enough to deal with arbitrary levels of noise (with L 1 -errors below 5.202%), improving the efficiency significantly in practical applications. Moreover, our method can be directly transferred to neighbor sampling spaces with different sampling points, showing a great generalization. The study provides a powerful approach for inverse identification of material properties and promises for wide applications such as real-time elastography and high-throughput non-destructive evaluation techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助oops采纳,获得10
刚刚
大水发布了新的文献求助30
1秒前
花痴的衫发布了新的文献求助20
1秒前
爆米花应助美美熊采纳,获得10
1秒前
yanwan发布了新的文献求助10
2秒前
李健应助秋天采纳,获得10
4秒前
漂亮的善愁关注了科研通微信公众号
6秒前
6秒前
7秒前
谁家的小陆完成签到,获得积分10
9秒前
cctv18应助下下潜采纳,获得10
10秒前
11秒前
lina发布了新的文献求助10
12秒前
愉快的晓啸完成签到,获得积分10
12秒前
12秒前
情怀应助皮念寒采纳,获得10
12秒前
12秒前
因默完成签到 ,获得积分10
13秒前
14秒前
美美熊发布了新的文献求助20
15秒前
刘巧明完成签到 ,获得积分10
16秒前
122发布了新的文献求助10
16秒前
小菜鸡发布了新的文献求助10
16秒前
16秒前
tsukinineko发布了新的文献求助10
17秒前
可爱的函函应助Pan采纳,获得10
17秒前
17秒前
17秒前
pan应助麦片采纳,获得20
22秒前
22秒前
大个应助122采纳,获得10
22秒前
皮念寒发布了新的文献求助10
23秒前
23秒前
24秒前
cctv18给长情听芹的求助进行了留言
25秒前
美美熊发布了新的文献求助10
28秒前
28秒前
秋天发布了新的文献求助10
29秒前
天天快乐应助超级的丹琴采纳,获得10
30秒前
馒头完成签到 ,获得积分10
31秒前
高分求助中
请在求助之前详细阅读求助说明!!!! 20000
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
The Three Stars Each: The Astrolabes and Related Texts 900
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
[Lambert-Eaton syndrome without calcium channel autoantibodies] 520
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
A radiographic standard of reference for the growing knee 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2471941
求助须知:如何正确求助?哪些是违规求助? 2138269
关于积分的说明 5449223
捐赠科研通 1862193
什么是DOI,文献DOI怎么找? 926101
版权声明 562752
科研通“疑难数据库(出版商)”最低求助积分说明 495334