亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Large Language Models Enhanced Sequential Recommendation for Long-tail User and Item

计算机科学 长尾 自然语言处理 人工智能 数学 统计
作者
Qidong Liu,Xian Wu,Xiangyu Zhao,Yejing Wang,Zijian Zhang,Feng Tian,Yefeng Zheng
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2405.20646
摘要

Sequential recommendation systems (SRS) serve the purpose of predicting users' subsequent preferences based on their past interactions and have been applied across various domains such as e-commerce and social networking platforms. However, practical SRS encounters challenges due to the fact that most users engage with only a limited number of items, while the majority of items are seldom consumed. These challenges, termed as the long-tail user and long-tail item dilemmas, often create obstacles for traditional SRS methods. Mitigating these challenges is crucial as they can significantly impact user satisfaction and business profitability. While some research endeavors have alleviated these issues, they still grapple with issues such as seesaw or noise stemming from the scarcity of interactions. The emergence of large language models (LLMs) presents a promising avenue to address these challenges from a semantic standpoint. In this study, we introduce the Large Language Models Enhancement framework for Sequential Recommendation (LLM-ESR), which leverages semantic embeddings from LLMs to enhance SRS performance without increasing computational overhead. To combat the long-tail item challenge, we propose a dual-view modeling approach that fuses semantic information from LLMs with collaborative signals from traditional SRS. To address the long-tail user challenge, we introduce a retrieval augmented self-distillation technique to refine user preference representations by incorporating richer interaction data from similar users. Through comprehensive experiments conducted on three authentic datasets using three widely used SRS models, our proposed enhancement framework demonstrates superior performance compared to existing methodologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
30秒前
1分钟前
1分钟前
wanci应助zq采纳,获得10
1分钟前
CHEN完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
ZQJ2001KYT应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
Hui发布了新的文献求助10
2分钟前
Hui完成签到,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
5分钟前
犹豫幻丝发布了新的文献求助20
5分钟前
5分钟前
科研通AI5应助犹豫幻丝采纳,获得10
6分钟前
Sunny完成签到,获得积分10
6分钟前
6分钟前
Ava应助h0jian09采纳,获得10
6分钟前
6分钟前
馆长应助breeze采纳,获得30
6分钟前
7分钟前
袁青寒完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
spike发布了新的文献求助10
7分钟前
breeze完成签到,获得积分10
7分钟前
无限鸵鸟发布了新的文献求助10
7分钟前
Alisha完成签到,获得积分10
7分钟前
PeterLin完成签到,获得积分10
8分钟前
8分钟前
小蘑菇应助赟然采纳,获得20
8分钟前
9分钟前
lili发布了新的文献求助50
9分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4513695
求助须知:如何正确求助?哪些是违规求助? 3958844
关于积分的说明 12270730
捐赠科研通 3620439
什么是DOI,文献DOI怎么找? 1992456
邀请新用户注册赠送积分活动 1028766
科研通“疑难数据库(出版商)”最低求助积分说明 919858