已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Cross vision transformer with enhanced Growth Optimizer for breast cancer detection in IoMT environment

乳腺癌 计算机科学 变压器 人工智能 计算机视觉 医学 癌症 内科学 工程类 电气工程 电压
作者
Diego Oliva,Abdelghani Dahou,Ahmad O. Aseeri,Ahmed A. Ewees,Mohammed A. A. Al‐qaness,Rehab Ali Ibrahim
出处
期刊:Computational Biology and Chemistry [Elsevier BV]
卷期号:111: 108110-108110
标识
DOI:10.1016/j.compbiolchem.2024.108110
摘要

The recent advances in artificial intelligence modern approaches can play vital roles in the Internet of Medical Things (IoMT). Automatic diagnosis is one of the most important topics in the IoMT, including cancer diagnosis. Breast cancer is one of the top causes of death among women. Accurate diagnosis and early detection of breast cancer can improve the survival rate of patients. Deep learning models have demonstrated outstanding potential in accurately detecting and diagnosing breast cancer. This paper proposes a novel technology for breast cancer detection using CrossViT as the deep learning model and an enhanced version of the Growth Optimizer algorithm (MGO) as the feature selection method. CrossVit is a hybrid deep learning model that combines the strengths of both convolutional neural networks (CNNs) and transformers. The MGO is a meta-heuristic algorithm that selects the most relevant features from a large pool of features to enhance the performance of the model. The developed approach was evaluated on three publicly available breast cancer datasets and achieved competitive performance compared to other state-of-the-art methods. The results show that the combination of CrossViT and the MGO can effectively identify the most informative features for breast cancer detection, potentially assisting clinicians in making accurate diagnoses and improving patient outcomes. The MGO algorithm improves accuracy by approximately 1.59% on INbreast, 5.00% on MIAS, and 0.79% on MiniDDSM compared to other methods on each respective dataset. The developed approach can also be utilized to improve the Quality of Service (QoS) in the healthcare system as a deployable IoT-based intelligent solution or a decision-making assistance service, enhancing the efficiency and precision of the diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
端庄大白完成签到 ,获得积分10
2秒前
4秒前
7秒前
Alicia完成签到 ,获得积分10
8秒前
wise111发布了新的文献求助10
10秒前
丁丁发布了新的文献求助10
11秒前
俊逸的盛男完成签到 ,获得积分10
13秒前
科研通AI2S应助Lazarus采纳,获得10
14秒前
16秒前
16秒前
LYL完成签到,获得积分10
18秒前
端庄的新瑶完成签到,获得积分10
19秒前
poison完成签到 ,获得积分10
19秒前
科目三应助hey采纳,获得10
20秒前
essemmy发布了新的文献求助10
20秒前
英俊的铭应助eurus采纳,获得10
21秒前
在水一方应助六沉采纳,获得10
23秒前
还好完成签到,获得积分10
28秒前
28秒前
jixuzhuixun完成签到 ,获得积分10
29秒前
李健的小迷弟应助Jian采纳,获得10
31秒前
32秒前
Lazarus发布了新的文献求助10
33秒前
光之霓裳完成签到 ,获得积分10
33秒前
eurus发布了新的文献求助10
35秒前
爱静静应助端庄的新瑶采纳,获得20
35秒前
自信秋烟完成签到 ,获得积分10
37秒前
科研通AI5应助wise111采纳,获得30
38秒前
清爽达完成签到 ,获得积分10
42秒前
43秒前
Eddy完成签到,获得积分10
46秒前
穆紫发布了新的文献求助10
50秒前
机智的乐驹完成签到 ,获得积分10
51秒前
慕青应助wp采纳,获得10
54秒前
asd1576562308完成签到 ,获得积分10
56秒前
JamesPei应助例外采纳,获得30
56秒前
57秒前
我是老大应助lxl采纳,获得10
59秒前
Paris完成签到 ,获得积分10
1分钟前
科研通AI5应助吴迪采纳,获得10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792399
求助须知:如何正确求助?哪些是违规求助? 3336676
关于积分的说明 10281801
捐赠科研通 3053411
什么是DOI,文献DOI怎么找? 1675608
邀请新用户注册赠送积分活动 803571
科研通“疑难数据库(出版商)”最低求助积分说明 761457