Real-Time Detection Technology of Corn Kernel Breakage and Mildew Based on Improved YOLOv5s

破损 核(代数) 霉病 人工智能 计算机科学 模式识别(心理学) 数学 园艺 生物 万维网 组合数学
作者
Mingming Liu,Yinzeng Liu,Qihuan Wang,Qinghao He,Duanyang Geng
出处
期刊:Agriculture [MDPI AG]
卷期号:14 (5): 725-725 被引量:4
标识
DOI:10.3390/agriculture14050725
摘要

In order to solve low recognition of corn kernel breakage degree and corn kernel mildew degree during corn kernel harvesting, this paper proposes a real-time detection method for corn kernel breakage and mildew based on improved YOlOv5s, which is referred to as the CST-YOLOv5s model algorithm in this paper. The method continuously obtains images through the discrete uniform sampling device of corn kernels and generates whole corn kernels, breakage corn kernels, and mildew corn kernel dataset samples. We aimed at the problems of high similarity of some corn kernel features in the acquired images and the low precision of corn kernel breakage and mildew recognition. Firstly, the CBAM attention mechanism is added to the backbone network of YOLOv5s to finely allocate and process the feature information, highlighting the features of corn breakage and mildew. Secondly, the pyramid pooling structure SPPCPSC, which integrates cross-stage local networks, is adopted to replace the SPPF in YOLOv5s. SPP and CPSC technologies are used to extract and fuse features of different scales, improving the precision of object detection. Finally, the original prediction head is converted into a transformer prediction head to explore the prediction potential with a multi-head attention mechanism. The experimental results show that the CST-YOLOv5s model has a significant improvement in the detection of corn kernel breakage and mildew. Compared with the original YOLOv5s model, the average precision (AP) of corn kernel breakage and mildew recognition increased by 5.2% and 7.1%, respectively, and the mean average precision (mAP) of all kinds of corn kernel recognition is 96.1%, and the frame rate is 36.7 FPS. Compared with YOLOv4-tiny, YOLOv6n, YOLOv7, YOLOv8s, and YOLOv9-E detection model algorithms, the CST-YOLOv5s model has better overall performance in terms of detection accuracy and speed. This study can provide a reference for real-time detection of breakage and mildew kernels during the harvesting process of corn kernels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
希望天下0贩的0应助XIN采纳,获得10
1秒前
111完成签到 ,获得积分10
2秒前
SEANFLY发布了新的文献求助10
2秒前
星辰发布了新的文献求助10
2秒前
王晖发布了新的文献求助10
2秒前
豆豆哥完成签到 ,获得积分10
3秒前
uuuu发布了新的文献求助10
3秒前
007完成签到,获得积分10
3秒前
3秒前
程老六发布了新的文献求助10
3秒前
蓝胖胖完成签到 ,获得积分10
4秒前
蓝莓完成签到 ,获得积分10
4秒前
遇见发布了新的文献求助10
4秒前
顺心飞绿完成签到 ,获得积分10
4秒前
5秒前
林珍发布了新的文献求助10
5秒前
5秒前
树德完成签到,获得积分10
5秒前
天天快乐应助玉鱼儿采纳,获得10
6秒前
6秒前
zyy完成签到,获得积分20
6秒前
Rakuen42发布了新的文献求助10
7秒前
7秒前
顾矜应助喜洋羊采纳,获得10
7秒前
研友_VZG7GZ应助cqq采纳,获得10
7秒前
彭于晏应助Jan采纳,获得10
7秒前
Lemon发布了新的文献求助10
7秒前
梅溪湖的提词器完成签到,获得积分10
8秒前
zhouzhou完成签到,获得积分10
8秒前
小菜瓜完成签到,获得积分10
8秒前
淡然柚子发布了新的文献求助10
9秒前
10秒前
顾矜应助时荒采纳,获得10
10秒前
11秒前
11秒前
11秒前
王振强发布了新的文献求助20
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396796
求助须知:如何正确求助?哪些是违规求助? 4517121
关于积分的说明 14062479
捐赠科研通 4428983
什么是DOI,文献DOI怎么找? 2432179
邀请新用户注册赠送积分活动 1424661
关于科研通互助平台的介绍 1403657