YOLO-CCS: Vehicle detection algorithm based on coordinate attention mechanism

机制(生物学) 计算机科学 算法 计算机视觉 人工智能 认识论 哲学
作者
Yuhua Li,Mengyue Zhang,Chunyu Zhang,Hui Liang,Pu Li,Weijun Zhang
出处
期刊:Digital Signal Processing [Elsevier BV]
卷期号:153: 104632-104632 被引量:3
标识
DOI:10.1016/j.dsp.2024.104632
摘要

Accurate and fast vehicle detection is a key factor in the field of intelligent transportation. To solve the problems such as low recognition accuracy, slow detection speed, and poor robustness existing in current vehicle detection algorithms. This paper proposes a vehicle detection algorithm based on YOLOv5 and the coordinate attention mechanism (CA) named YOLO-CCS. YOLO-CCS enables the network to focus on the vehicle itself during the feature extraction process, reduces the loss of feature information and improves the effect of vehicle detection. In our algorithm, we firstly expand YOLOv5s with CA blocks at the location of feature extraction section of network backbone and enhance the extraction capabilities of key features, and suppress the interference of complex backgrounds by embedding position information. Secondly, to enable the network to extract rich feature information and improve the feature fusion capability of the network, we introduce the faster implementation of the Cross Stage Partial (CSP) Bottleneck with 2 convolutions (C2f) in the backbone and neck of the network, which has more residual blocks and skip connections, which provides rich feature semantic information, and heightens the feature extraction capabilities of the network. Thirdly, we integrate the SCYLLA-IOU (SIOU) loss function suitable for YOLO-CCS. So we can leverage the vector angle between the real box and the predicted box to further improve the accuracy of the algorithm and accelerate the convergence of the model. Experimental results show that, compared with the baseline model YOLOv5s, the mAP50 and mAP50−95 of our method increase by 3.2% and 1.7% respectively. Compared with other YOLO based models, mAP50 has increased by approximately 4%. And the detecting speed of YOLO-CCS algorithm reaches 48 FPS, which can meet the real-time requirements of vehicle detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小美酱完成签到 ,获得积分0
刚刚
刚刚
天真慕山发布了新的文献求助10
1秒前
1秒前
1秒前
无名小卒每文完成签到,获得积分10
2秒前
无限翅膀完成签到,获得积分10
2秒前
李爱国应助李盼盼采纳,获得30
2秒前
3秒前
cfz完成签到,获得积分10
3秒前
贪玩的千凡完成签到,获得积分10
3秒前
一叶知秋完成签到,获得积分10
3秒前
3秒前
微笑的井完成签到 ,获得积分10
4秒前
大狼发布了新的文献求助10
4秒前
4秒前
ReyAdas发布了新的文献求助10
4秒前
义气的如冬完成签到,获得积分10
4秒前
冰冰发布了新的文献求助10
4秒前
纯真的柔完成签到,获得积分20
4秒前
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
科研小白完成签到,获得积分10
6秒前
Shao_Jq完成签到 ,获得积分10
6秒前
Lucas应助敏感板栗采纳,获得10
6秒前
6秒前
lvbowen发布了新的文献求助10
7秒前
Misaki完成签到,获得积分10
7秒前
ohh完成签到,获得积分10
7秒前
英俊的铭应助安静初雪采纳,获得10
7秒前
上官若男应助樊念烟采纳,获得10
7秒前
大宝完成签到,获得积分10
7秒前
liu bo完成签到,获得积分10
8秒前
落寞半烟完成签到,获得积分10
8秒前
cfz发布了新的文献求助10
8秒前
8秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834484
求助须知:如何正确求助?哪些是违规求助? 3376988
关于积分的说明 10496011
捐赠科研通 3096514
什么是DOI,文献DOI怎么找? 1704953
邀请新用户注册赠送积分活动 820381
科研通“疑难数据库(出版商)”最低求助积分说明 772011