神经影像学
卷积神经网络
人工智能
计算机科学
深度学习
数据集
集合(抽象数据类型)
机器学习
阿尔茨海默病神经影像学倡议
模式识别(心理学)
疾病
阿尔茨海默病
神经科学
心理学
医学
病理
程序设计语言
作者
Adrien Payan,Giovanni Montana
出处
期刊:Cornell University - arXiv
日期:2015-01-01
被引量:383
标识
DOI:10.48550/arxiv.1502.02506
摘要
Pattern recognition methods using neuroimaging data for the diagnosis of Alzheimer's disease have been the subject of extensive research in recent years. In this paper, we use deep learning methods, and in particular sparse autoencoders and 3D convolutional neural networks, to build an algorithm that can predict the disease status of a patient, based on an MRI scan of the brain. We report on experiments using the ADNI data set involving 2,265 historical scans. We demonstrate that 3D convolutional neural networks outperform several other classifiers reported in the literature and produce state-of-art results.
科研通智能强力驱动
Strongly Powered by AbleSci AI