缩小
趋同(经济学)
构造(python库)
计算机科学
梯度下降
反向
算法
数学优化
操作员(生物学)
领域(数学)
图像(数学)
反问题
数学
人工智能
人工神经网络
基因
转录因子
数学分析
生物化学
抑制因子
经济
化学
程序设计语言
纯数学
经济增长
几何学
标识
DOI:10.1088/0031-9155/55/13/022
摘要
In the medical imaging field, discrete gradient transform (DGT) is widely used as a sparsifying operator to define the total variation (TV). Recently, TV minimization has become a hot topic in image reconstruction and is usually implemented using the steepest descent method (SDM). Since TV minimization with the SDM takes a long computational time, here we construct a pseudo-inverse of the DGT and adapt a soft-threshold filtering algorithm, whose convergence and efficiency have been theoretically proven. Also, we construct a pseudo-inverse of the discrete difference transform (DDT) and design an algorithm for L1 minimization of the total difference. These two methods are evaluated in numerical simulation. The results demonstrate the merits of the proposed techniques.
科研通智能强力驱动
Strongly Powered by AbleSci AI