蛋氨酸腺苷转移酶
MYB公司
分子生物学
生物
蛋氨酸
基因表达调控
肝细胞癌
转录调控
结合位点
基因表达
基因
化学
生物化学
癌症研究
氨基酸
作者
Heping Yang,Zong‐Zhi Huang,Jiaohong Wang,Shelly C. Lu
标识
DOI:10.1096/fj.01-0040com
摘要
Liver-specific and non-liver-specific methionine adenosyltransferase (MAT) are products of two genes, MAT1A and MAT2A, respectively, that catalyze the formation of S-adenosylmethionine. We showed a switch from MAT1A to MAT2A expression at the transcriptional level in human hepatocellular carcinoma (HCC) that facilitates cancer cell growth. The purpose of the present study was to better understand the molecular mechanism of increased MAT2A expression in HCC. In vitro DNase I footprinting analysis revealed two protected sites (-354 to -312 and -73 to -28) using nuclear proteins from HCC and HepG2 cells, but not normal liver. These sites are also protected in HepG2 cells on in vivo DNase I footprinting analysis. These protected sites contain consensus binding sites for c-Myb and Sp1. In HCC, the mRNA levels of c-myb and Sp1 and binding to their respective sites increased. Mutation of the c-Myb or Sp1 site reduced MAT2A promoter activity by 67% and 50%, respectively. The importance of these cis-acting elements and trans-activating factors was confirmed using heterologous promoter and expression vectors. Increased expression of c-Myb and Sp1 and binding to the MAT2A promoter contribute to transcriptional up-regulation of MAT2A in HCC.-Yang, H., Huang, Z.-Z., Wang, J., Lu, S. C. The role of c-Myb and Sp1 in the up-regulation of methionine adenosyltransferase 2A gene expression in human hepatocellular carcinoma.
科研通智能强力驱动
Strongly Powered by AbleSci AI