Protein-DNA Binding Residue Prediction via Bagging Strategy and Sequence-based Cube-Format Feature

计算机科学 人工智能 分类器(UML) 模式识别(心理学) 卷积神经网络 滑动窗口协议 DNA测序 特征提取 DNA 计算生物学 生物 遗传学 操作系统 窗口(计算)
作者
Jun Hu,Yansong Bai,Linlin Zheng,Ning-Xin Jia,Dong‐Jun Yu,Guijun Zhang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (6): 3635-3645 被引量:9
标识
DOI:10.1109/tcbb.2021.3123828
摘要

Protein-DNA interactions play an important role in biological processes. Accurately identifying DNA-binding residues is a critical but challenging task for protein function annotations and drug design. Although wet-lab experimental methods are the most accurate way to identify DNA-binding residues, they are time consuming and labor intensive. There is an urgent need to develop computational methods to rapidly and accurately predict DNA-binding residues. In this study, we propose a novel sequence-based method, named PredDBR, for predicting DNA-binding residues. In PredDBR, for each protein, its position-specific frequency matrix (PSFM), predicted secondary structure (PSS), and predicted probabilities of ligand-binding residues (PPLBR) are first generated as three feature sources. Secondly, for each feature source, the sliding window technique is employed to extract the matrix-format feature of each residue. Then, we design two strategies, i.e., SR and AVE, to separately transform PSFM-based and two predicted feature source-based, i.e., PSS-based and PPLBR-based, matrix-format features of each residue into three cube-format features. Finally, after serially combining the three cube-format features, the ensemble classifier is generated via applying bagging strategy to multiple base classifiers built by the framework of 2D convolutional neural network. Experimental results demonstrate that PredDBR outperforms several state-of-the-art sequenced-based DNA-binding residue predictors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
思源应助行光采纳,获得10
2秒前
白vv完成签到,获得积分10
2秒前
丘比特应助CQUT采纳,获得30
2秒前
小呵完成签到,获得积分10
3秒前
NexusExplorer应助浔初先生采纳,获得10
5秒前
bkagyin应助xxiao采纳,获得10
6秒前
07734完成签到,获得积分10
7秒前
科研通AI5应助小鱼儿采纳,获得10
7秒前
小呵发布了新的文献求助10
7秒前
yuhong完成签到,获得积分10
8秒前
情怀应助虚拟的秋寒采纳,获得10
8秒前
CX完成签到 ,获得积分0
10秒前
11秒前
12秒前
大模型应助wsfy15采纳,获得10
12秒前
13秒前
情怀应助Lijunjie采纳,获得10
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
852应助科研通管家采纳,获得10
13秒前
桐桐应助科研通管家采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
田様应助科研通管家采纳,获得10
14秒前
李健应助科研通管家采纳,获得30
14秒前
乐乐应助科研通管家采纳,获得10
14秒前
桐桐应助科研通管家采纳,获得10
14秒前
CipherSage应助科研通管家采纳,获得30
14秒前
nature发布了新的文献求助10
16秒前
17秒前
ding应助lizhiqian2024采纳,获得10
17秒前
邹醉蓝发布了新的文献求助10
18秒前
18秒前
21秒前
yuaner发布了新的文献求助10
21秒前
小张发布了新的文献求助10
22秒前
轻轻完成签到 ,获得积分10
23秒前
我爱看文献是假的完成签到,获得积分10
23秒前
盼盼完成签到 ,获得积分10
24秒前
Jasper应助安沐采纳,获得30
24秒前
piahui完成签到,获得积分10
26秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784148
求助须知:如何正确求助?哪些是违规求助? 3329252
关于积分的说明 10241071
捐赠科研通 3044752
什么是DOI,文献DOI怎么找? 1671305
邀请新用户注册赠送积分活动 800215
科研通“疑难数据库(出版商)”最低求助积分说明 759268