芦丁
化学
谷胱甘肽
抗氧化剂
植物螯合素
槲皮素
千穗谷
镉
食品科学
超氧化物歧化酶
类黄酮
戒毒(替代医学)
生物化学
苋菜
酶
替代医学
有机化学
病理
医学
作者
Li Yang,Yuchen Kang,Jiaxin Liu,Na Li,Hui Sun,Tianqi Ao,Wenqing Chen
标识
DOI:10.1080/15226514.2021.1999902
摘要
Rutin is a flavonoid with strong antioxidative effects on plant metabolism that facilitates resistance to environmental stress. The effect of foliar rutin on cadmium (Cd) uptake in Amaranthus hypochondriacus (K472) was studied. The results showed that a foliar spray of rutin alleviated Cd toxicity, promoted plant growth, improved Cd transfer to and storage in aerial plant parts and Cd accumulation with positive effects over time. A rutin concentration of 1.5 mg/mL showed the strongest promotion effect: the biomass and Cd content were increased at 13 days by 68.62% and 405.54% compared to 3 days, respectively, whereas a high concentration of rutin (5 mg/mL) inhibited plant growth and hindered Cd absorption. Two stages of Cd detoxification were identified in K472 after appropriate rutin application. First, an antioxidant system including an enzymatic antioxidant (superoxide dismutase [SOD]) and nonenzymatic antioxidants (glutathione [GSH] and flavonoids) was activated to enhance plant stress resistance. Quercetin and phytochelatin (PC) synthesis were then enhanced to perform detoxification synergistically with the antioxidant system to improve stress tolerance and achieve stable Cd detoxification. The results demonstrated that appropriately prolonging the application time of exogenous rutin to K472 is an effective way to improve the Cd remediation efficiency.The application of exogenous rutin to regulate the growth and Cd absorption of grain amaranth is reported for the first time. A foliar spray of rutin enriches Cd by regulating the metabolism of flavonoids and enhancing antioxidation and phytochelatin detoxification under Cd stress. Properly prolonging the harvest time after rutin treatment can greatly improve the Cd remediation efficiency of soil. The findings of the present study would be helpful for the remediation of Cd-contaminated soils.
科研通智能强力驱动
Strongly Powered by AbleSci AI