Research on Rehabilitation Effect Prediction for Patients with SCI Based on Machine Learning

医学 康复 均方误差 日常生活活动 皮尔逊积矩相关系数 随机森林 物理疗法 标准误差 平均绝对误差 人工智能 机器学习 物理医学与康复 统计 数学 计算机科学
作者
Fei Yang,Xin Guo
出处
期刊:World Neurosurgery [Elsevier BV]
卷期号:158: e662-e674 被引量:2
标识
DOI:10.1016/j.wneu.2021.11.040
摘要

Because of the complex condition of patients with spinal cord injury (SCI), it is difficult to accurately calculate the activity of daily living (ADL) score of discharged patients. In view of the above problem, this research proposes a prediction model of discharged ADL score based on machine learning, in order to get the rehabilitation effect of patients after rehabilitation training. First, the medical records of 1231 patients with SCI were collected, and the corresponding data preprocessing was carried out. Secondly, the Pearson correlation coefficient method was combined with the feature selection method based on random forest (RF) to screen out 6 features closely related to the discharged ADL score. Then RF and RF optimized by Harris hawks optimizer (HHO-RF) were used to predict the discharged ADL score of patients with SCI. The mean absolute error (MAE), root mean squared error (RMSE), and coefficient of determination ( R 2 ) were used as evaluation indicators of the model. The prediction features selected by feature extraction were ADL score on admission, age, injury segment, injury reason, injury position, and injury degree. After 10-fold cross-validation, MAE, RMSE, and R 2 of RF were 0.0875, 0.1346, and 0.7662, respectively. MAE, RMSE, and R 2 of HHO-RF were 0.0821, 0.1089, and 0.8537, respectively. The prediction effect of HHO-RF has been greatly improved. In clinical treatment, HHO-RF can accurately predict the discharged ADL score and provide a reasonable direction for patients to choose rehabilitation programs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Vrhef发布了新的文献求助30
1秒前
光亮的世界完成签到,获得积分10
1秒前
2秒前
科研通AI6应助CNcattle采纳,获得10
2秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
6秒前
领导范儿应助一帆风顺采纳,获得10
8秒前
小叶子发布了新的文献求助10
9秒前
11秒前
科研通AI5应助沈婉婉采纳,获得10
12秒前
Gabby完成签到 ,获得积分10
13秒前
哆小咪完成签到 ,获得积分10
13秒前
打打应助Dreamer0422采纳,获得30
14秒前
踏实的映波完成签到,获得积分10
16秒前
隐形曼青应助xqf采纳,获得10
17秒前
粗暴的小凝完成签到,获得积分10
18秒前
FashionBoy应助随风飘荡121采纳,获得10
18秒前
ljydhr完成签到,获得积分10
18秒前
Lorrie应助simple采纳,获得10
19秒前
19秒前
小灵通完成签到,获得积分10
19秒前
微笑高山完成签到 ,获得积分10
20秒前
一帆风顺发布了新的文献求助10
22秒前
23秒前
23秒前
Duke_ethan完成签到,获得积分10
24秒前
s子完成签到,获得积分10
24秒前
sunran0完成签到 ,获得积分10
26秒前
十三月落完成签到,获得积分10
27秒前
东耦发布了新的文献求助10
28秒前
Orange应助傲娇的棉花糖采纳,获得10
29秒前
kyt126完成签到,获得积分10
30秒前
31秒前
终将散落凡尘完成签到,获得积分10
31秒前
量子星尘发布了新的文献求助10
32秒前
33秒前
33秒前
34秒前
忧郁若菱发布了新的文献求助10
36秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4276955
求助须知:如何正确求助?哪些是违规求助? 3805736
关于积分的说明 11924419
捐赠科研通 3452468
什么是DOI,文献DOI怎么找? 1893483
邀请新用户注册赠送积分活动 943612
科研通“疑难数据库(出版商)”最低求助积分说明 847473