Development of high-efficiency and inexpensive oxygen evolution reaction (OER) catalysts is highly desirable for water electrolysis devices and rechargeable metal–air batteries. Herein, we report novel one-dimensional (1D) Fe-doped α-Ni(OH)2 nanobelts as OER-active electrocatalysts. In-depth characterizations revealed that Fe atoms are incorporated into the lattice of Ni(OH)2, resulting in the strong electron interaction with active Ni sites. Moreover, a contraction of Ni–O bond distance induced by Fe is revealed by operando X-ray absorption fine structure spectroscopy under OER working condition, which leads to a near-optimized adsorption of oxygen intermediates. Consequently, the Fe-doped α-Ni(OH)2 nanobelts deliver significantly promoted OER activity in alkaline solutions with a low OER overpotential of 236 mV at 10 mA cm–2 along with good stability. This work provides a strategy for developing efficiently non-noble metal catalysts, gives insights to the Fe doping effect and the dynamic evolution of disturbed atomic and electronic structure of Ni active sites.