Artificial Intelligence in Fracture Detection: A Systematic Review and Meta-Analysis

医学 荟萃分析 检查表 系统回顾 人工智能 列联表 梅德林 机器学习 内科学 认知心理学 法学 计算机科学 政治学 心理学
作者
Rachel Kuo,Conrad Harrison,Terry‐Ann Curran,Benjamin Jones,Alexander Freethy,David Cussons,Max Stewart,Gary S. Collins,Dominic Furniss
出处
期刊:Radiology [Radiological Society of North America]
卷期号:304 (1): 50-62 被引量:136
标识
DOI:10.1148/radiol.211785
摘要

Background Patients with fractures are a common emergency presentation and may be misdiagnosed at radiologic imaging. An increasing number of studies apply artificial intelligence (AI) techniques to fracture detection as an adjunct to clinician diagnosis. Purpose To perform a systematic review and meta-analysis comparing the diagnostic performance in fracture detection between AI and clinicians in peer-reviewed publications and the gray literature (ie, articles published on preprint repositories). Materials and Methods A search of multiple electronic databases between January 2018 and July 2020 (updated June 2021) was performed that included any primary research studies that developed and/or validated AI for the purposes of fracture detection at any imaging modality and excluded studies that evaluated image segmentation algorithms. Meta-analysis with a hierarchical model to calculate pooled sensitivity and specificity was used. Risk of bias was assessed by using a modified Prediction Model Study Risk of Bias Assessment Tool, or PROBAST, checklist. Results Included for analysis were 42 studies, with 115 contingency tables extracted from 32 studies (55 061 images). Thirty-seven studies identified fractures on radiographs and five studies identified fractures on CT images. For internal validation test sets, the pooled sensitivity was 92% (95% CI: 88, 93) for AI and 91% (95% CI: 85, 95) for clinicians, and the pooled specificity was 91% (95% CI: 88, 93) for AI and 92% (95% CI: 89, 92) for clinicians. For external validation test sets, the pooled sensitivity was 91% (95% CI: 84, 95) for AI and 94% (95% CI: 90, 96) for clinicians, and the pooled specificity was 91% (95% CI: 81, 95) for AI and 94% (95% CI: 91, 95) for clinicians. There were no statistically significant differences between clinician and AI performance. There were 22 of 42 (52%) studies that were judged to have high risk of bias. Meta-regression identified multiple sources of heterogeneity in the data, including risk of bias and fracture type. Conclusion Artificial intelligence (AI) and clinicians had comparable reported diagnostic performance in fracture detection, suggesting that AI technology holds promise as a diagnostic adjunct in future clinical practice. Clinical trial registration no. CRD42020186641 © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Cohen and McInnes in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐访旋发布了新的文献求助10
刚刚
刚刚
刚刚
ddstty完成签到,获得积分10
刚刚
凉拌折耳根完成签到 ,获得积分10
1秒前
男研选手发布了新的文献求助10
1秒前
幸福语儿发布了新的文献求助20
2秒前
zz完成签到,获得积分10
4秒前
4秒前
ardejiang发布了新的文献求助30
4秒前
MHY完成签到,获得积分20
4秒前
pny发布了新的文献求助10
5秒前
搜集达人应助c123采纳,获得10
6秒前
6秒前
科研通AI5应助JW采纳,获得10
6秒前
8秒前
ding应助大橘采纳,获得10
9秒前
hyhyhyhy发布了新的文献求助10
9秒前
信步发布了新的文献求助10
10秒前
lll完成签到 ,获得积分10
10秒前
我是老大应助希希采纳,获得10
12秒前
zzz完成签到,获得积分10
12秒前
香蕉觅云应助Jane采纳,获得10
13秒前
清新的幻桃完成签到,获得积分10
14秒前
Akim应助hyhyhyhy采纳,获得10
17秒前
18秒前
Fitz完成签到,获得积分10
18秒前
缓慢采柳发布了新的文献求助10
19秒前
20秒前
男研选手完成签到,获得积分10
21秒前
潘妍西关注了科研通微信公众号
21秒前
橘子海完成签到 ,获得积分10
21秒前
高兴的海亦发布了新的文献求助100
21秒前
21秒前
英姑应助扎心采纳,获得10
21秒前
所所应助wuwuwu采纳,获得10
22秒前
22秒前
jinoir发布了新的文献求助10
23秒前
欣欣完成签到,获得积分10
23秒前
24秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783709
求助须知:如何正确求助?哪些是违规求助? 3328883
关于积分的说明 10239058
捐赠科研通 3044346
什么是DOI,文献DOI怎么找? 1670946
邀请新用户注册赠送积分活动 799982
科研通“疑难数据库(出版商)”最低求助积分说明 759171