Development and Validation of a Radiomics Nomogram Using Computed Tomography for Differentiating Immune Checkpoint Inhibitor-Related Pneumonitis From Radiation Pneumonitis for Patients With Non-Small Cell Lung Cancer

医学 肺炎 列线图 肺癌 接收机工作特性 放射治疗 无线电技术 放射科 过敏性肺炎 阶段(地层学) 逻辑回归 肿瘤科 内科学 核医学 古生物学 生物
作者
Qingtao Qiu,Ligang Xing,Yu Wang,Alei Feng,Qiang Wen
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:13: 870842-870842 被引量:53
标识
DOI:10.3389/fimmu.2022.870842
摘要

Background The combination of immunotherapy and chemoradiotherapy has become the standard therapeutic strategy for patients with unresected locally advance-stage non-small cell lung cancer (NSCLC) and induced treatment-related adverse effects, particularly immune checkpoint inhibitor-related pneumonitis (CIP) and radiation pneumonitis (RP). The aim of this study is to differentiate between CIP and RP by pretreatment CT radiomics and clinical or radiological parameters. Methods A total of 126 advance-stage NSCLC patients with pneumonitis were enrolled in this retrospective study and divided into the training dataset ( n =88) and the validation dataset ( n = 38). A total of 837 radiomics features were extracted from regions of interest based on the lung parenchyma window of CT images. A radiomics signature was constructed on the basis of the predictive features by the least absolute shrinkage and selection operator. A logistic regression was applied to develop a radiomics nomogram. Receiver operating characteristics curve and area under the curve (AUC) were applied to evaluate the performance of pneumonitis etiology identification. Results There was no significant difference between the training and the validation datasets for any clinicopathological parameters in this study. The radiomics signature, named Rad-score, consisting of 11 selected radiomics features, has potential ability to differentiate between CIP and RP with the empirical and α-binormal-based AUCs of 0.891 and 0.896. These results were verified in the validation dataset with AUC = 0.901 and 0.874, respectively. The clinical and radiological parameters of bilateral changes ( p < 0.001) and sharp border ( p = 0.001) were associated with the identification of CIP and RP. The nomogram model showed good performance on discrimination in the training dataset (AUC = 0.953 and 0.950) and in the validation dataset (AUC = 0.947 and 0.936). Conclusions CT-based radiomics features have potential values for differentiating between patients with CIP and patients with RP. The addition of bilateral changes and sharp border produced superior model performance on classifying, which could be a useful method to improve related clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
南风完成签到,获得积分10
刚刚
Jasper应助卖辣翅中采纳,获得10
刚刚
1秒前
杨朝进完成签到,获得积分10
3秒前
Ava应助kkk采纳,获得10
3秒前
古月博士完成签到,获得积分10
3秒前
3秒前
5秒前
情怀应助rhsfdfb采纳,获得10
5秒前
5秒前
6秒前
qaxt发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
田様应助暴躁的夏蓉采纳,获得10
7秒前
科研通AI6应助路灯采纳,获得10
9秒前
充电宝应助ysta采纳,获得10
10秒前
10秒前
张婧仪完成签到,获得积分10
10秒前
10秒前
桐桐应助科研通管家采纳,获得10
11秒前
ai吃应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
11秒前
Ava应助科研通管家采纳,获得10
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
翟永胜完成签到,获得积分10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
结实的凝天完成签到,获得积分10
11秒前
8R60d8应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5533015
求助须知:如何正确求助?哪些是违规求助? 4621501
关于积分的说明 14578711
捐赠科研通 4561512
什么是DOI,文献DOI怎么找? 2499339
邀请新用户注册赠送积分活动 1479240
关于科研通互助平台的介绍 1450485