Fully Automatic Deep Learning in Bi-institutional Prostate Magnetic Resonance Imaging

前列腺癌 医学 磁共振成像 四分位间距 前列腺 放射科 分割 数据集 核医学 人工智能 癌症 计算机科学 内科学
作者
Nils Netzer,Cedric Weißer,Patrick Schelb,Xianfeng Wang,Xiaoyan Qin,Magdalena Görtz,Viktoria Schütz,Jan Philipp Radtke,Thomas Hielscher,Constantin Schwab,Albrecht Stenzinger,Tristan Anselm Kuder,Regula Gnirs,Markus Hohenfellner,Heinz‐Peter Schlemmer,Klaus H. Maier‐Hein,David Bonekamp
出处
期刊:Investigative Radiology [Lippincott Williams & Wilkins]
卷期号:56 (12): 799-808 被引量:30
标识
DOI:10.1097/rli.0000000000000791
摘要

Background The potential of deep learning to support radiologist prostate magnetic resonance imaging (MRI) interpretation has been demonstrated. Purpose The aim of this study was to evaluate the effects of increased and diversified training data (TD) on deep learning performance for detection and segmentation of clinically significant prostate cancer–suspicious lesions. Materials and Methods In this retrospective study, biparametric (T2-weighted and diffusion-weighted) prostate MRI acquired with multiple 1.5-T and 3.0-T MRI scanners in consecutive men was used for training and testing of prostate segmentation and lesion detection networks. Ground truth was the combination of targeted and extended systematic MRI–transrectal ultrasound fusion biopsies, with significant prostate cancer defined as International Society of Urological Pathology grade group greater than or equal to 2. U-Nets were internally validated on full, reduced, and PROSTATEx-enhanced training sets and subsequently externally validated on the institutional test set and the PROSTATEx test set. U-Net segmentation was calibrated to clinically desired levels in cross-validation, and test performance was subsequently compared using sensitivities, specificities, predictive values, and Dice coefficient. Results One thousand four hundred eighty-eight institutional examinations (median age, 64 years; interquartile range, 58–70 years) were temporally split into training (2014–2017, 806 examinations, supplemented by 204 PROSTATEx examinations) and test (2018–2020, 682 examinations) sets. In the test set, Prostate Imaging–Reporting and Data System (PI-RADS) cutoffs greater than or equal to 3 and greater than or equal to 4 on a per-patient basis had sensitivity of 97% (241/249) and 90% (223/249) at specificity of 19% (82/433) and 56% (242/433), respectively. The full U-Net had corresponding sensitivity of 97% (241/249) and 88% (219/249) with specificity of 20% (86/433) and 59% (254/433), not statistically different from PI-RADS ( P > 0.3 for all comparisons). U-Net trained using a reduced set of 171 consecutive examinations achieved inferior performance ( P < 0.001). PROSTATEx training enhancement did not improve performance. Dice coefficients were 0.90 for prostate and 0.42/0.53 for MRI lesion segmentation at PI-RADS category 3/4 equivalents. Conclusions In a large institutional test set, U-Net confirms similar performance to clinical PI-RADS assessment and benefits from more TD, with neither institutional nor PROSTATEx performance improved by adding multiscanner or bi-institutional TD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谢惠茹完成签到,获得积分10
刚刚
2秒前
coolru发布了新的文献求助10
3秒前
ChOnG发布了新的文献求助10
3秒前
FashionBoy应助愤怒的店员采纳,获得10
4秒前
852应助冷迎梦采纳,获得10
4秒前
kkkkkoi发布了新的文献求助10
5秒前
王者完成签到,获得积分10
7秒前
奋斗土豆完成签到 ,获得积分10
8秒前
科研小趴菜完成签到,获得积分10
9秒前
dm完成签到,获得积分10
10秒前
111关闭了111文献求助
11秒前
崔洪瑞完成签到,获得积分10
12秒前
13秒前
科研通AI5应助xiixix采纳,获得10
15秒前
虚幻靖易发布了新的文献求助10
16秒前
18秒前
coolru发布了新的文献求助10
20秒前
无限的山水完成签到,获得积分10
20秒前
Reborn应助Minicoper采纳,获得10
22秒前
22秒前
盈盈发布了新的文献求助10
24秒前
24秒前
25秒前
慢慢发布了新的文献求助10
26秒前
沐沐发布了新的文献求助100
28秒前
张先生完成签到 ,获得积分10
28秒前
28秒前
无花果应助科研通管家采纳,获得10
28秒前
今后应助科研通管家采纳,获得10
28秒前
汉堡包应助科研通管家采纳,获得10
28秒前
拼搏冷卉完成签到 ,获得积分10
30秒前
彭于晏应助优美从菡采纳,获得10
32秒前
WayneO完成签到,获得积分10
32秒前
苏暖完成签到,获得积分10
33秒前
xiixix发布了新的文献求助10
34秒前
36秒前
coolru发布了新的文献求助10
38秒前
背后的海蓝完成签到,获得积分20
39秒前
xinchengzhu完成签到 ,获得积分10
40秒前
高分求助中
Java: A Beginner's Guide, 10th Edition 5000
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3848718
求助须知:如何正确求助?哪些是违规求助? 3391475
关于积分的说明 10567920
捐赠科研通 3112107
什么是DOI,文献DOI怎么找? 1715069
邀请新用户注册赠送积分活动 825560
科研通“疑难数据库(出版商)”最低求助积分说明 775647