Fully Automatic Deep Learning in Bi-institutional Prostate Magnetic Resonance Imaging

医学 磁共振成像 前列腺 放射科 核磁共振 癌症 内科学 物理
作者
Nils Netzer,Cedric Weißer,Patrick Schelb,Xianfeng Wang,Xiaoyan Qin,Magdalena Görtz,Viktoria Schütz,Jan Philipp Radtke,Thomas Hielscher,Constantin Schwab,Albrecht Stenzinger,Tristan Anselm Kuder,Regula Gnirs,Markus Hohenfellner,Heinz‐Peter Schlemmer,Klaus Maier‐Hein,David Bonekamp
出处
期刊:Investigative Radiology [Lippincott Williams & Wilkins]
卷期号:56 (12): 799-808 被引量:39
标识
DOI:10.1097/rli.0000000000000791
摘要

The potential of deep learning to support radiologist prostate magnetic resonance imaging (MRI) interpretation has been demonstrated.The aim of this study was to evaluate the effects of increased and diversified training data (TD) on deep learning performance for detection and segmentation of clinically significant prostate cancer-suspicious lesions.In this retrospective study, biparametric (T2-weighted and diffusion-weighted) prostate MRI acquired with multiple 1.5-T and 3.0-T MRI scanners in consecutive men was used for training and testing of prostate segmentation and lesion detection networks. Ground truth was the combination of targeted and extended systematic MRI-transrectal ultrasound fusion biopsies, with significant prostate cancer defined as International Society of Urological Pathology grade group greater than or equal to 2. U-Nets were internally validated on full, reduced, and PROSTATEx-enhanced training sets and subsequently externally validated on the institutional test set and the PROSTATEx test set. U-Net segmentation was calibrated to clinically desired levels in cross-validation, and test performance was subsequently compared using sensitivities, specificities, predictive values, and Dice coefficient.One thousand four hundred eighty-eight institutional examinations (median age, 64 years; interquartile range, 58-70 years) were temporally split into training (2014-2017, 806 examinations, supplemented by 204 PROSTATEx examinations) and test (2018-2020, 682 examinations) sets. In the test set, Prostate Imaging-Reporting and Data System (PI-RADS) cutoffs greater than or equal to 3 and greater than or equal to 4 on a per-patient basis had sensitivity of 97% (241/249) and 90% (223/249) at specificity of 19% (82/433) and 56% (242/433), respectively. The full U-Net had corresponding sensitivity of 97% (241/249) and 88% (219/249) with specificity of 20% (86/433) and 59% (254/433), not statistically different from PI-RADS (P > 0.3 for all comparisons). U-Net trained using a reduced set of 171 consecutive examinations achieved inferior performance (P < 0.001). PROSTATEx training enhancement did not improve performance. Dice coefficients were 0.90 for prostate and 0.42/0.53 for MRI lesion segmentation at PI-RADS category 3/4 equivalents.In a large institutional test set, U-Net confirms similar performance to clinical PI-RADS assessment and benefits from more TD, with neither institutional nor PROSTATEx performance improved by adding multiscanner or bi-institutional TD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风中莞发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
WW完成签到 ,获得积分10
2秒前
2秒前
xinxin123完成签到,获得积分10
3秒前
Singularity应助xxxx采纳,获得10
3秒前
4秒前
Jasper应助听雨采纳,获得10
4秒前
整齐夜安完成签到,获得积分10
4秒前
可爱的函函应助Seven7采纳,获得10
4秒前
Orange应助缥缈不惜采纳,获得10
5秒前
xinxin123发布了新的文献求助10
6秒前
务实晓蓝发布了新的文献求助10
6秒前
6秒前
余姓懒完成签到,获得积分10
6秒前
6秒前
7秒前
隐形曼青应助yun采纳,获得10
8秒前
8秒前
8秒前
小脑斧完成签到,获得积分20
9秒前
NAN发布了新的文献求助10
9秒前
10秒前
10秒前
阔达紫青应助幸福大白采纳,获得10
10秒前
大气乐天发布了新的文献求助10
11秒前
科研通AI6应助甜甜冬寒采纳,获得10
11秒前
小乔同学发布了新的文献求助10
12秒前
lsc发布了新的文献求助10
12秒前
12秒前
南枝发布了新的文献求助10
13秒前
13秒前
555发布了新的文献求助10
13秒前
852应助栗子采纳,获得10
14秒前
14秒前
小胡同学完成签到,获得积分10
14秒前
x夏天发布了新的文献求助10
15秒前
赘婿应助无心的闭月采纳,获得10
16秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 666
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4252550
求助须知:如何正确求助?哪些是违规求助? 3785727
关于积分的说明 11882397
捐赠科研通 3436714
什么是DOI,文献DOI怎么找? 1886026
邀请新用户注册赠送积分活动 937520
科研通“疑难数据库(出版商)”最低求助积分说明 843186