Machine Learning Assisted Discovery of Novel p38α Inhibitors from Natural Products

虚拟筛选 药物发现 计算机科学 机器学习 化学空间 人工智能 对接(动物) 计算生物学 生物信息学 生物 医学 护理部
作者
Tian-Ze Shen,Yong-Xing Tao,Biaoqi Liu,Deliang Kong,Ruihan Zhang,Wei‐Lie Xiao
出处
期刊:Combinatorial Chemistry & High Throughput Screening [Bentham Science Publishers]
卷期号:26 (6): 1214-1223 被引量:1
标识
DOI:10.2174/1386207325666220630154917
摘要

P38α, emerging as a hot spot for drug discovery, is a member of the mitogen- activated protein kinase (MAPK) family and plays a crucial role in regulating the production of inflammatory mediators. However, despite a massive number of highly potent molecules being reported and several under clinical trials, no p38α inhibitor has been approved yet. There is still demand to discover novel p38α to deal with the safety issue induced by off-target effects.In this study, we performed a machine learning-based virtual screening to identify p38α inhibitors from a natural products library, expecting to find novel drug lead scaffolds.Firstly, the training dataset was processed with similarity screening to fit the chemical space of the natural products library. Then, six classifiers were constructed by combing two sets of molecular features with three different machine learning algorithms. After model evaluation, the three best classifiers were used for virtual screening.Among the 15 compounds selected for experimental validation, picrasidine S was identified as a p38α inhibitor with the IC50 as 34.14 μM. Molecular docking was performed to predict the interaction mode of picrasidine S and p38α, indicating a specific hydrogen bond with Met109.This work provides a protocol and example for machine learning-assisted discovery of p38α inhibitor from natural products, as well as a novel lead scaffold represented by picrasidine S for further optimization and investigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
强壮的美女完成签到 ,获得积分10
3秒前
ddffgz发布了新的文献求助10
3秒前
豪豪完成签到,获得积分10
5秒前
勤恳诗筠发布了新的文献求助10
5秒前
Akim应助zxm采纳,获得10
6秒前
7秒前
zzzk完成签到 ,获得积分10
8秒前
oxygen完成签到 ,获得积分10
8秒前
Cherish应助kdjm688采纳,获得10
9秒前
可爱的香菇完成签到 ,获得积分10
9秒前
Nereus完成签到 ,获得积分10
9秒前
11秒前
xxxxxxh完成签到,获得积分10
12秒前
ddffgz完成签到,获得积分20
14秒前
15秒前
平淡雪糕完成签到,获得积分10
17秒前
科研通AI5应助Ytgl采纳,获得10
17秒前
Jasper应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
慕青应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
17秒前
drtianyunhong发布了新的文献求助10
18秒前
呐呐完成签到,获得积分10
19秒前
TYT发布了新的文献求助10
19秒前
20秒前
布衣南耕完成签到 ,获得积分10
21秒前
21秒前
23秒前
25秒前
Tanchongyu发布了新的文献求助10
27秒前
阴阳饱饱发布了新的文献求助10
27秒前
家园完成签到 ,获得积分10
28秒前
29秒前
Kyrie发布了新的文献求助10
32秒前
赘婿应助qiyihan采纳,获得10
32秒前
hahahahaha完成签到,获得积分10
33秒前
33秒前
Ytgl发布了新的文献求助10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781213
求助须知:如何正确求助?哪些是违规求助? 3326680
关于积分的说明 10228052
捐赠科研通 3041768
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799104
科研通“疑难数据库(出版商)”最低求助积分说明 758751