PTEN公司
PI3K/AKT/mTOR通路
癌症研究
蛋白激酶B
血管生成
生物
LY294002型
细胞生物学
信号转导
化学
作者
Hua Zhong,Kelly A. Chiles,David M. Feldser,Erik Laughner,Colleen F. Hanrahan,Maria Magdalena Georgescu,Jonathan W. Simons,Gregg L. Semenza
出处
期刊:PubMed
日期:2000-03-15
卷期号:60 (6): 1541-5
被引量:1428
摘要
Dysregulated signal transduction from receptor tyrosine kinases to phosphatidylinositol 3-kinase (PI3K), AKT (protein kinase B), and its effector FKBP-rapamycin-associated protein (FRAP) occurs via autocrine stimulation or inactivation of the tumor suppressor PTEN in many cancers. Here we demonstrate that in human prostate cancer cells, basal-, growth factor-, and mitogen-induced expression of hypoxia-inducible factor 1 (HIF-1) alpha, the regulated subunit of the transcription factor HIF-1, is blocked by LY294002 and rapamycin, inhibitors of PI3K and FRAP, respectively. HIF-1-dependent gene transcription is blocked by dominant-negative AKT or PI3K and by wild-type PTEN, whereas transcription is stimulated by constitutively active AKT or dominant-negative PTEN. LY294002 and rapamycin also inhibit growth factor- and mitogen-induced secretion of vascular endothelial growth factor, the product of a known HIF-1 target gene, thus linking the PI3K/PTEN/AKT/FRAP pathway, HIF-1, and tumor angiogenesis. These data indicate that pharmacological agents that target PI3K, AKT, or FRAP in tumor cells inhibit HIF-1alpha expression and that such inhibition may contribute to therapeutic efficacy.
科研通智能强力驱动
Strongly Powered by AbleSci AI