Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and MATLAB implementation

马尔科夫蒙特卡洛 计算机科学 统计推断 贝叶斯推理 蒙特卡罗方法 贝叶斯定理 应用数学 推论 后验概率 贝叶斯概率 算法 统计物理学 数学 数学优化 人工智能 统计 物理
作者
Jasper A. Vrugt
出处
期刊:Environmental Modelling and Software [Elsevier BV]
卷期号:75: 273-316 被引量:516
标识
DOI:10.1016/j.envsoft.2015.08.013
摘要

Bayesian inference has found widespread application and use in science and engineering to reconcile Earth system models with data, including prediction in space (interpolation), prediction in time (forecasting), assimilation of observations and deterministic/stochastic model output, and inference of the model parameters. Bayes theorem states that the posterior probability, p(H|Y˜) of a hypothesis, H is proportional to the product of the prior probability, p(H) of this hypothesis and the likelihood, L(H|Y˜) of the same hypothesis given the new observations, Y˜, or p(H|Y˜)∝p(H)L(H|Y˜). In science and engineering, H often constitutes some numerical model, ℱ(x) which summarizes, in algebraic and differential equations, state variables and fluxes, all knowledge of the system of interest, and the unknown parameter values, x are subject to inference using the data Y˜. Unfortunately, for complex system models the posterior distribution is often high dimensional and analytically intractable, and sampling methods are required to approximate the target. In this paper I review the basic theory of Markov chain Monte Carlo (MCMC) simulation and introduce a MATLAB toolbox of the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm developed by Vrugt et al. (2008a, 2009a) and used for Bayesian inference in fields ranging from physics, chemistry and engineering, to ecology, hydrology, and geophysics. This MATLAB toolbox provides scientists and engineers with an arsenal of options and utilities to solve posterior sampling problems involving (among others) bimodality, high-dimensionality, summary statistics, bounded parameter spaces, dynamic simulation models, formal/informal likelihood functions (GLUE), diagnostic model evaluation, data assimilation, Bayesian model averaging, distributed computation, and informative/noninformative prior distributions. The DREAM toolbox supports parallel computing and includes tools for convergence analysis of the sampled chain trajectories and post-processing of the results. Seven different case studies illustrate the main capabilities and functionalities of the MATLAB toolbox.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
33完成签到 ,获得积分10
1秒前
小雨完成签到,获得积分10
1秒前
yang发布了新的文献求助10
1秒前
2秒前
飘文献完成签到,获得积分10
6秒前
王妍完成签到 ,获得积分10
13秒前
LUMOS完成签到,获得积分10
14秒前
柔弱云朵完成签到,获得积分10
14秒前
BINBIN完成签到 ,获得积分10
15秒前
CodeCraft应助科研通管家采纳,获得10
15秒前
CipherSage应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
今后应助科研通管家采纳,获得10
15秒前
彭于晏应助科研通管家采纳,获得10
15秒前
cdercder应助科研通管家采纳,获得10
15秒前
大个应助科研通管家采纳,获得10
15秒前
无花果应助科研通管家采纳,获得10
15秒前
bkagyin应助科研通管家采纳,获得10
16秒前
乐乐应助科研通管家采纳,获得10
16秒前
汉堡包应助科研通管家采纳,获得10
16秒前
传奇3应助科研通管家采纳,获得30
16秒前
16秒前
北风完成签到,获得积分10
16秒前
小李叭叭完成签到,获得积分10
17秒前
onw完成签到,获得积分10
19秒前
19秒前
xx完成签到 ,获得积分10
20秒前
燕子完成签到,获得积分10
23秒前
xiaixax完成签到,获得积分10
25秒前
Tim完成签到 ,获得积分10
30秒前
淡定的幻枫完成签到 ,获得积分10
30秒前
小背包完成签到 ,获得积分10
31秒前
斯文败类应助BUAAzmt采纳,获得30
31秒前
32秒前
sunianjinshi发布了新的文献求助10
38秒前
40秒前
Haha完成签到 ,获得积分10
41秒前
41秒前
安详凡完成签到 ,获得积分10
45秒前
风里有声音完成签到 ,获得积分10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777749
求助须知:如何正确求助?哪些是违规求助? 3323216
关于积分的说明 10213166
捐赠科研通 3038523
什么是DOI,文献DOI怎么找? 1667522
邀请新用户注册赠送积分活动 798139
科研通“疑难数据库(出版商)”最低求助积分说明 758275