微泡
癌症
医学
胰腺癌
病理
癌症研究
内科学
生物
小RNA
生物化学
基因
作者
Naureen Javeed,Gunisha Sagar,Shamit K. Dutta,Thomas C. Smyrk,Julie S. Lau,Santanu Bhattacharya,Mark J. Truty,Gloria M. Petersen,Randal J. Kaufman,Suresh T. Chari,Debabrata Mukhopadhyay
标识
DOI:10.1158/1078-0432.ccr-14-2022
摘要
Abstract Purpose: Pancreatic cancer frequently causes diabetes. We recently proposed adrenomedullin as a candidate mediator of pancreatic β-cell dysfunction in pancreatic cancer. How pancreatic cancer–derived adrenomedullin reaches β cells remote from the cancer to induce β-cell dysfunction is unknown. We tested a novel hypothesis that pancreatic cancer sheds adrenomedullin-containing exosomes into circulation, which are transported to β cells and impair insulin secretion. Experimental Methods: We characterized exosomes from conditioned media of pancreatic cancer cell lines (n = 5) and portal/peripheral venous blood of patients with pancreatic cancer (n = 20). Western blot analysis showed the presence of adrenomedullin in pancreatic cancer-exosomes. We determined the effect of adrenomedullin-containing pancreatic cancer exosomes on insulin secretion from INS-1 β cells and human islets, and demonstrated the mechanism of exosome internalization into β cells. We studied the interaction between β-cell adrenomedullin receptors and adrenomedullin present in pancreatic cancer-exosomes. In addition, the effect of adrenomedullin on endoplasmic reticulum (ER) stress response genes and reactive oxygen/nitrogen species generation in β cells was shown. Results: Exosomes were found to be the predominant extracellular vesicles secreted by pancreatic cancer into culture media and patient plasma. Pancreatic cancer-exosomes contained adrenomedullin and CA19-9, readily entered β cells through caveolin-mediated endocytosis or macropinocytosis, and inhibited insulin secretion. Adrenomedullin in pancreatic cancer exosomes interacted with its receptor on β cells. Adrenomedullin receptor blockade abrogated the inhibitory effect of exosomes on insulin secretion. β cells exposed to adrenomedullin or pancreatic cancer exosomes showed upregulation of ER stress genes and increased reactive oxygen/nitrogen species. Conclusions: Pancreatic cancer causes paraneoplastic β-cell dysfunction by shedding adrenomedullin+/CA19-9+ exosomes into circulation that inhibit insulin secretion, likely through adrenomedullin-induced ER stress and failure of the unfolded protein response. Clin Cancer Res; 21(7); 1722–33. ©2014 AACR. See related commentary by Korc, p. 1508
科研通智能强力驱动
Strongly Powered by AbleSci AI