光热治疗
材料科学
等离子体子
纳秒
等离子纳米粒子
光电子学
超短脉冲
光热效应
胶体金
纳米颗粒
纳米技术
纳米结构
激光器
光学
物理
作者
Xi Chen,Yiting Chen,Min Yan,Min Qiu
出处
期刊:ACS Nano
[American Chemical Society]
日期:2012-02-22
卷期号:6 (3): 2550-2557
被引量:389
摘要
Photothermal effects in plasmonic nanostructures have great potentials in applications for photothermal cancer therapy, optical storage, thermo-photovoltaics, etc. However, the transient temperature behavior of a nanoscale material system during an ultrafast photothermal process has rarely been accurately investigated. Here a heat transfer model is constructed to investigate the temporal and spatial variation of temperature in plasmonic gold nanostructures. First, as a benchmark scenario, we study the light-induced heating of a gold nanosphere in water and calculate the relaxation time of the nanosphere excited by a modulated light. Second, we investigate heating and reshaping of gold nanoparticles in a more complex metamaterial absorber structure induced by a nanosecond pulsed light. The model shows that the temperature of the gold nanoparticles can be raised from room temperature to >795 K in just a few nanoseconds with a low light luminance, owing to enhanced light absorption through strong plasmonic resonance. Such quantitative predication of temperature change, which is otherwise formidable to measure experimentally, can serve as an excellent guideline for designing devices for ultrafast photothermal applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI