活性氧
坏死性下垂
程序性细胞死亡
细胞凋亡
氮氧化物4
线粒体ROS
NADPH氧化酶
分子生物学
线粒体
氧化应激
化学
细胞生物学
生物
生物化学
作者
Wenwen Zhao,Haitao Feng,Wen Sun,Kang Liu,Jin‐Jian Lu,Xiuping Chen
出处
期刊:Redox biology
[Elsevier BV]
日期:2017-01-05
卷期号:11: 524-534
被引量:112
标识
DOI:10.1016/j.redox.2016.12.036
摘要
Oxidative stress causes endothelial death while underlying mechanisms remain elusive. Herein, the pro-death effect of tert-butyl hydroperoxide (t-BHP) was investigated with low concentration (50 μM) of t-BHP (t-BHPL) and high concentration (500 μM) of t-BHP (t-BHPH). Both t-BHPL and t-BHPH induced endothelial cell death was determined. T-BHPL induced caspase-dependent apoptosis and reactive oxygen species (ROS) generation, which was inhibited by N-acetyl-L-cysteine (NAC). Furthermore, NADPH oxidase inhibitor diphenyleneiodonium (DPI), NOX4 siRNA, and NOX4 inhibitor GKT137831 reduced t-BHPL-induced ROS generation while mitochondrial respiratory chain inhibitors rotenone (Rot), 2-thenoyltrifluoroacetone (TTFA), and antimycin A (AA) failed to do so. NOX4 overexpression resulted in increased ROS generation and Akt expression but decreased sensitivity to t-BHPL. In contrast, T-BHPH induced LDH release, PI uptake, and cell translucent cytoplasm. RIP1 inhibitor necrostatin-1 (Nec-1), MLKL inhibitor necrosulfonamide (NSA) and silencing RIP1, RIP3, and MLKL inhibited t-BHPH-induced cell death while pan-caspase inhibitor Z-VAD-FMK showed no effect. T-BHPH-induced ROS production was inhibited by TTFA, AA and Rot while DPI showed no effect. T-BHPH induced RIP1/RIP3 interaction, which was decreased by Rot, TTFA, and AA. Silence RIP1 and RIP3 but not MLKL inhibited t-BHPH-induced mitochondrial membrane potential (MMP) decrease and ROS production. Moreover, P38MAPK inhibitor SB203580 reversed both t-BHPL and t-BHPH-induced cell death while inhibitors for ERKs and JNKs showed no obvious effect. These data suggested that t-BHP induced both apoptosis and necroptosis in endothelial cells which was mediated by ROS and p38MAPK. ROS derived from NADPH oxidase and mitochondria contributed to t-BHPL and t-BHPH-induced apoptosis and necroptosis, respectively.
科研通智能强力驱动
Strongly Powered by AbleSci AI