Contrastive Learning of Medical Visual Representations from Paired Images and Text

计算机科学 人工智能 图像(数学) 编码器 模式识别(心理学) 班级(哲学) 医学影像学 相似性(几何) 自然语言处理 机器学习 操作系统
作者
Yuhao Zhang,Hang Jiang,Yasuhide Miura,Christopher D. Manning,Curtis P. Langlotz
出处
期刊:Cornell University - arXiv 被引量:225
标识
DOI:10.48550/arxiv.2010.00747
摘要

Learning visual representations of medical images (e.g., X-rays) is core to medical image understanding but its progress has been held back by the scarcity of human annotations. Existing work commonly relies on fine-tuning weights transferred from ImageNet pretraining, which is suboptimal due to drastically different image characteristics, or rule-based label extraction from the textual report data paired with medical images, which is inaccurate and hard to generalize. Meanwhile, several recent studies show exciting results from unsupervised contrastive learning from natural images, but we find these methods help little on medical images because of their high inter-class similarity. We propose ConVIRT, an alternative unsupervised strategy to learn medical visual representations by exploiting naturally occurring paired descriptive text. Our new method of pretraining medical image encoders with the paired text data via a bidirectional contrastive objective between the two modalities is domain-agnostic, and requires no additional expert input. We test ConVIRT by transferring our pretrained weights to 4 medical image classification tasks and 2 zero-shot retrieval tasks, and show that it leads to image representations that considerably outperform strong baselines in most settings. Notably, in all 4 classification tasks, our method requires only 10\% as much labeled training data as an ImageNet initialized counterpart to achieve better or comparable performance, demonstrating superior data efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助洁净的士晋采纳,获得10
1秒前
SCI1区发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
qing0429发布了新的文献求助10
3秒前
大模型应助Sun采纳,获得10
4秒前
崔硕硕完成签到,获得积分10
4秒前
4秒前
bbihk完成签到,获得积分10
4秒前
中中中中中呀完成签到,获得积分10
5秒前
华仔应助91采纳,获得10
6秒前
G丶cc发布了新的文献求助10
6秒前
7秒前
7秒前
彭于晏应助科研通管家采纳,获得30
7秒前
7秒前
8秒前
今后应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
8秒前
qianZhang完成签到,获得积分20
8秒前
qi-完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
赵Zhao发布了新的文献求助10
9秒前
Geoyee完成签到,获得积分20
10秒前
10秒前
FashionBoy应助细心妙菡采纳,获得10
11秒前
11秒前
Y哦莫哦莫完成签到,获得积分10
11秒前
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791756
求助须知:如何正确求助?哪些是违规求助? 3336090
关于积分的说明 10278727
捐赠科研通 3052729
什么是DOI,文献DOI怎么找? 1675280
邀请新用户注册赠送积分活动 803318
科研通“疑难数据库(出版商)”最低求助积分说明 761165