Numerical analysis of a deep learning formulation of multi-parameter elastic full waveform inversion

反演(地质) 人工智能 地质学 深度学习 人工神经网络 差异进化 维数之咒 算法 计算机科学 波形 机器学习 地震学 电信 雷达 构造学
作者
Tianze Zhang,K. A. Innanen,Jian Sun,Daniel Trad
出处
期刊:Seg Technical Program Expanded Abstracts [Society of Exploration Geophysicists]
被引量:15
标识
DOI:10.1190/segam2020-3426826.1
摘要

PreviousNext No AccessSEG Technical Program Expanded Abstracts 2020Numerical analysis of a deep learning formulation of multi-parameter elastic full waveform inversionAuthors: Tianze ZhangKristopher A. InnanenJian SunDaniel O. TradTianze ZhangUniversity of CalgarySearch for more papers by this author, Kristopher A. InnanenUniversity of CalgarySearch for more papers by this author, Jian SunPennsylvania State UniversitySearch for more papers by this author, and Daniel O. TradUniversity of CalgarySearch for more papers by this authorhttps://doi.org/10.1190/segam2020-3426826.1 SectionsSupplemental MaterialAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail AbstractIn this paper, we formulate seismic full waveform inversion within a deep learning environment. We are motivated both by the possibilities of incorporating the training of multiple datasets with the relatively low dimensionality of theoryguided network design and by the fact that by doing so we implement an FWI algorithm ready-made for new computational architectures. A recurrent neural network is set up with rules enforcing elastic wave propagation, with the wavefield projected onto a measurement surface acting as the labeled data to be compared with observed seismic data. Training this network amounts to carrying out elastic FWI. Based on the Automatic Differential method, the gradients can be accurately and efficiently constructed by inspection and use of the computational graph, a gradient which acts to update the elastic model. Under the theory-guided network design, the Automatic Differential method provide efficiency and flexibility for different misfits and parameterization alterations. We use different misfits, which are the l2, l1 and Huber norm, to improve the inversion results for parameters in eFWI. We also prepare our approach to mitigate cross-talk, which is a general property of multiparameter full waveform inversion algorithms, by allowing relative freedom to vary the eFWI parameterizations.Presentation Date: Tuesday, October 13, 2020Session Start Time: 1:50 PMPresentation Time: 3:05 PMLocation: 351FPresentation Type: OralKeywords: artificial intelligence, full-waveform inversion, elastic, finite difference, time-domainPermalink: https://doi.org/10.1190/segam2020-3426826.1FiguresReferencesRelatedDetailsCited byImplicit Seismic Full Waveform Inversion With Deep Neural Representation27 February 2023 | Journal of Geophysical Research: Solid Earth, Vol. 128, No. 3Elastic-AdjointNet: A physics-guided deep autoencoder to overcome crosstalk effects in multiparameter full-waveform inversionArnab Dhara and Mrinal Sen15 August 2022Multilayer perceptron and Bayesian neural network based implicit elastic full-waveform inversionTianze Zhang, Jian Sun, Daniel O. Trad, and Kristopher A. Innanen15 August 2022A recurrent neural network for 𝓁1 anisotropic viscoelastic full-waveform inversion with high-order total variation regularizationTianze Zhang, Jian Sun, Kristopher A. Innanen, and Daniel O. Trad1 September 2021Physics-guided deep learning for seismic inversion with hybrid training and uncertainty analysisJian Sun, Kristopher A. Innanen, and Chao Huang19 March 2021 | GEOPHYSICS, Vol. 86, No. 3 SEG Technical Program Expanded Abstracts 2020ISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2020 Pages: 3887 publication data© 2020 Published in electronic format with permission by the Society of Exploration GeophysicistsPublisher:Society of Exploration Geophysicists HistoryPublished Online: 30 Sep 2020 CITATION INFORMATION Tianze Zhang, Kristopher A. Innanen, Jian Sun, and Daniel O. Trad, (2020), "Numerical analysis of a deep learning formulation of multi-parameter elastic full waveform inversion," SEG Technical Program Expanded Abstracts : 1531-1535. https://doi.org/10.1190/segam2020-3426826.1 Plain-Language Summary Keywordsartificial intelligencefull-waveform inversionelasticfinite differencetime-domainPDF DownloadLoading ...
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助空白采纳,获得10
刚刚
清新的白云关注了科研通微信公众号
3秒前
充电宝应助zhenya采纳,获得10
3秒前
赘婿应助落后的安寒采纳,获得10
3秒前
kyfbrahha完成签到 ,获得积分10
3秒前
田様应助小赵采纳,获得10
4秒前
香蕉觅云应助罗拉采纳,获得10
4秒前
123发布了新的文献求助10
4秒前
上官若男应助wuwei91采纳,获得10
5秒前
ke发布了新的文献求助10
7秒前
9秒前
10秒前
tanglu完成签到,获得积分10
10秒前
山林发布了新的文献求助10
10秒前
10秒前
11秒前
阿冰冰冰冰冰冰完成签到,获得积分10
12秒前
12秒前
空白发布了新的文献求助10
12秒前
罗拉发布了新的文献求助10
13秒前
传奇3应助黄晃晃采纳,获得10
13秒前
隐形曼青应助魏伯安采纳,获得10
14秒前
15秒前
安息香发布了新的文献求助10
15秒前
熊熊面包发布了新的文献求助10
16秒前
JamesPei应助bigboss采纳,获得10
16秒前
科研通AI5应助木雨亦潇潇采纳,获得30
16秒前
zhenya发布了新的文献求助10
17秒前
研友_VZG7GZ应助小程同学采纳,获得10
17秒前
等待凡灵完成签到,获得积分10
19秒前
19秒前
雪鱼发布了新的文献求助10
19秒前
20秒前
星辰大海应助Eve采纳,获得10
20秒前
烦啊阿啊阿完成签到,获得积分20
20秒前
情怀应助huang采纳,获得10
20秒前
魏伯安发布了新的文献求助10
21秒前
王哒哒发布了新的文献求助10
21秒前
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
《2024-2029年中国减肥产品行业市场分析及发展前景预测报告》 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4509144
求助须知:如何正确求助?哪些是违规求助? 3956084
关于积分的说明 12263356
捐赠科研通 3616410
什么是DOI,文献DOI怎么找? 1989795
邀请新用户注册赠送积分活动 1026255
科研通“疑难数据库(出版商)”最低求助积分说明 917692