Additive manufacturing of ultrafine-grained high-strength titanium alloys

等轴晶 材料科学 微观结构 钛合金 冶金 选择性激光熔化 近净形状 复合材料 合金
作者
Duyao Zhang,Dong Qiu,Mark A. Gibson,Yufeng Zheng,Hamish L. Fraser,David H. StJohn,Mark Easton
出处
期刊:Nature [Nature Portfolio]
卷期号:576 (7785): 91-95 被引量:889
标识
DOI:10.1038/s41586-019-1783-1
摘要

Additive manufacturing, often known as three-dimensional (3D) printing, is a process in which a part is built layer-by-layer and is a promising approach for creating components close to their final (net) shape. This process is challenging the dominance of conventional manufacturing processes for products with high complexity and low material waste1. Titanium alloys made by additive manufacturing have been used in applications in various industries. However, the intrinsic high cooling rates and high thermal gradient of the fusion-based metal additive manufacturing process often leads to a very fine microstructure and a tendency towards almost exclusively columnar grains, particularly in titanium-based alloys1. (Columnar grains in additively manufactured titanium components can result in anisotropic mechanical properties and are therefore undesirable2.) Attempts to optimize the processing parameters of additive manufacturing have shown that it is difficult to alter the conditions to promote equiaxed growth of titanium grains3. In contrast with other common engineering alloys such as aluminium, there is no commercial grain refiner for titanium that is able to effectively refine the microstructure. To address this challenge, here we report on the development of titanium–copper alloys that have a high constitutional supercooling capacity as a result of partitioning of the alloying element during solidification, which can override the negative effect of a high thermal gradient in the laser-melted region during additive manufacturing. Without any special process control or additional treatment, our as-printed titanium–copper alloy specimens have a fully equiaxed fine-grained microstructure. They also display promising mechanical properties, such as high yield strength and uniform elongation, compared to conventional alloys under similar processing conditions, owing to the formation of an ultrafine eutectoid microstructure that appears as a result of exploiting the high cooling rates and multiple thermal cycles of the manufacturing process. We anticipate that this approach will be applicable to other eutectoid-forming alloy systems, and that it will have applications in the aerospace and biomedical industries. Titanium–copper alloys with fully equiaxed grains and a fine microstructure are realized via an additive manufacturing process that exploits high cooling rates and multiple thermal cycles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助Leo采纳,获得10
2秒前
量子星尘发布了新的文献求助50
5秒前
ukulele117发布了新的文献求助10
6秒前
舒心的耷完成签到,获得积分10
7秒前
KINOKO发布了新的文献求助10
7秒前
8秒前
ddd完成签到,获得积分10
8秒前
auraro完成签到 ,获得积分10
8秒前
李爱国应助王大纯采纳,获得30
11秒前
11秒前
大模型应助AGRA采纳,获得10
12秒前
量子星尘发布了新的文献求助50
12秒前
开朗依霜发布了新的文献求助20
12秒前
12秒前
12秒前
12秒前
14秒前
14秒前
14秒前
现代如冬发布了新的文献求助20
15秒前
繁星发布了新的文献求助10
16秒前
17秒前
华仔应助鹤轩采纳,获得10
17秒前
Eddy发布了新的文献求助10
18秒前
18秒前
18秒前
18秒前
BettyNie完成签到 ,获得积分10
20秒前
myf完成签到 ,获得积分10
20秒前
21秒前
李爱国应助小乔采纳,获得10
22秒前
Leo发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
24秒前
24秒前
积极的邴发布了新的文献求助10
25秒前
zzz发布了新的文献求助10
28秒前
29秒前
香蕉觅云应助liu采纳,获得10
30秒前
31秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4676819
求助须知:如何正确求助?哪些是违规求助? 4054457
关于积分的说明 12537656
捐赠科研通 3748585
什么是DOI,文献DOI怎么找? 2070497
邀请新用户注册赠送积分活动 1099596
科研通“疑难数据库(出版商)”最低求助积分说明 979195