亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CC-92480 Is a Novel Cereblon E3 Ligase Modulator with Enhanced Tumoricidal and Immunomodulatory Activity Against Sensitive and Resistant Multiple Myeloma Cells

小脑 来那度胺 癌症研究 多发性骨髓瘤 泛素连接酶 药理学 泛素 化学 分子生物学 泊马度胺 生物 医学 免疫学 生物化学 基因
作者
Antonia López-Girona,Courtney G. Havens,Gang Lǚ,Emily Rychak,Derek Mendy,Bonny Gaffney,Christine Surka,Chin-Chun Lu,Mary E. Matyskiela,Gody Khambatta,Lilly Wong,Joshua D. Hansen,Daniel W. Pierce,Brian E. Cathers,James Carmichael
出处
期刊:Blood [Elsevier BV]
卷期号:134 (Supplement_1): 1812-1812 被引量:13
标识
DOI:10.1182/blood-2019-124338
摘要

Lenalidomide- and pomalidomide-based therapies are effective drugs in the treatment of patients with multiple myeloma (MM), however most patients with MM eventually relapse or become resistant. CC-92480, a novel cereblon (CRBN) E3 ligase modulator (CELMoD) with multiple activities including potent immunomodulation and single-agent antiproliferative effects, is being investigated in a phase 1 clinical trial (CC-92480-MM-001; NCT03374085) for patients with relapsed/refractory MM (RRMM). The present study investigates the preclinical data and mechanism of action of CC-92480 in MM models. CELMoD agents bound to CRBN confer differentiated substrate-degradation specificity on the CRL4CRBN E3 ubiquitin ligase. CRBN-modulator agents mediate destruction of Ikaros and Aiolos, transcription factors that contribute to myeloma cell survival. CC-92480 was found to produce rapid, deep, and sustained degradation of Ikaros and Aiolos, with superior antimyeloma activity. Accordingly, in a CRBN protein competitive binding assay, CC-92480 displaced a Cy-5-labeled CELMoD analog from CRBN with a 50% inhibitory concentration (IC50) value of 0.03 μM, whereas lenalidomide competed with an IC50 value of 1.27 μM in the same assay, demonstrating a higher binding affinity of CC-92480 for CRBN. Additionally, CC-92480 promoted the recruitment of Ikaros to the CRBN E3 ligase complex more effectively than pomalidomide in 2 orthogonal CRBN/Ikaros binding assays; it also triggered a more extensive cellular ubiquitination of Ikaros, and a faster, more efficient depletion of cellular Ikaros and Aiolos than pomalidomide. In various MM cell lines, including those with acquired resistance to lenalidomide or pomalidomide and low levels of CRBN, CC-92480 produced robust degradation of Ikaros and Aiolos followed by strong reduction of 2 additional and highly critical transcription factors, c-Myc and interferon regulatory factor 4, which are linked to the induction of apoptosis as measured by cleaved caspase-3. The tumoricidal activity of CC-92480 was shown to be CRBN dependent, since the effect was prevented by complete loss of CRBN or by the stabilization of Ikaros and Aiolos. CC-92480 displayed broad and potent antiproliferative activity across a panel of 20 MM cell lines that are either sensitive, have acquired resistance, or are refractory to lenalidomide or pomalidomide; the cell lines also contained diverse chromosomal translocations and oncogenic drivers typically found in MM patients. Approximately half of the MM cell lines evaluated were highly sensitive to CC-92480, with IC50 values for antiproliferative activity ranging from 0.04 to 5 nM; only 2 cell lines had IC50 values > 100 nM. CC-92480 inhibits cell proliferation and induces apoptosis in MM cell lines that are not sensitive to lenalidomide or pomalidomide. This panel of cell lines includes both refractory cell lines and resistant cell lines generated through continuous exposure to lenalidomide and pomalidomide that acquired low levels of CRBN protein or mutations in the CRBN gene. CC-92480 also induced deep destruction of Ikaros and Aiolos in cultures of peripheral blood mononuclear cells (PBMCs), which led to the activation of T cells and increased production of the cytokines interleukin-2 and interferon gamma. These responses occurred at the range of CC-92480 concentrations that show potent tumoricidal effect against MM cells. The T cell activation and enhanced cytokine production by CC-92480 led to the potent and effective immune-mediated killing of MM cells in co-cultures with PBMCs. CC-92480 is a potent antiproliferative and proapoptotic novel CELMoD with enhanced autonomous cell-killing activity in MM cells that are either sensitive, resistant, or have acquired resistance to lenalidomide and pomalidomide. CC-92480 has a unique and rapid degradation profile stemming from the enhanced efficiency to drive the formation of a protein-protein interaction between Ikaros and Aiolos and CRBN, inducing cytotoxic effects in a CRL4CRBN-dependent fashion that leads ultimately to the induction of apoptosis, even in the context of low or mutated CRBN protein. Additionally, similar to lenalidomide, CC-92480 conserves immunomodulatory activity against MM cells. These data support the clinical investigation of CC-92480 in patients with RRMM. Disclosures Lopez-Girona: Celgene Corporation: Employment. Havens:Pfizer: Employment, Equity Ownership; Celgene: Equity Ownership. Lu:Celgene Corporation: Employment, Equity Ownership. Rychak:Celgene Corporation: Employment, Equity Ownership. Mendy:Celgene Corporation: Employment. Gaffney:Celgene: Employment. Surka:Celgene: Employment, Equity Ownership. Lu:Celgene Corporation: Employment, Equity Ownership. Matyskiela:Celgene corporation: Employment. Khambatta:Celgene: Employment. Wong:Celgene Corporation: Employment, Equity Ownership. Hansen:Celgene Corporation: Employment. Pierce:Celgene Corporation: Employment, Equity Ownership. Cathers:Global Blood Therapeutics (GBT): Employment; Celgene Corporation: Equity Ownership. Carmichael:Celgene plc: Employment, Equity Ownership.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助科研通管家采纳,获得10
16秒前
niuzyang发布了新的文献求助10
23秒前
iShine完成签到 ,获得积分10
24秒前
28秒前
niuzyang完成签到,获得积分20
36秒前
枫威完成签到 ,获得积分10
41秒前
行走发布了新的文献求助10
59秒前
1分钟前
1分钟前
H_C发布了新的文献求助10
1分钟前
1分钟前
1分钟前
天天快乐应助英俊小鼠采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
科研通AI5应助H_C采纳,获得10
3分钟前
sowhat完成签到 ,获得积分10
3分钟前
3分钟前
杪夏二八完成签到 ,获得积分10
3分钟前
甜蜜发带完成签到 ,获得积分0
3分钟前
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
14999应助科研通管家采纳,获得10
4分钟前
gavin完成签到 ,获得积分10
4分钟前
老石完成签到 ,获得积分10
4分钟前
Wy21完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
行走发布了新的文献求助10
5分钟前
5分钟前
H_C发布了新的文献求助10
5分钟前
GingerF应助H_C采纳,获得10
6分钟前
光合作用完成签到,获得积分10
6分钟前
6分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Impact of water dispenser establishment on drinking water availability and health status of peri-urban community 560
Implantable Technologies 500
Theories of Human Development 400
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3919953
求助须知:如何正确求助?哪些是违规求助? 3464953
关于积分的说明 10935414
捐赠科研通 3193263
什么是DOI,文献DOI怎么找? 1764548
邀请新用户注册赠送积分活动 854963
科研通“疑难数据库(出版商)”最低求助积分说明 794541