人工光合作用
光催化
纳米工程
材料科学
催化作用
纳米线
化学工程
光合作用
选择性
纳米技术
化学
有机化学
生物化学
工程类
作者
Xin Zhao,Yingying Fan,Zhi‐Gang She,Xiaojing Zhang,Dongxue Han,Li Niu,Ari Ivaska
出处
期刊:ACS Catalysis
[American Chemical Society]
日期:2020-05-13
卷期号:10 (11): 6367-6376
被引量:135
标识
DOI:10.1021/acscatal.0c01033
摘要
Artificial photosynthesis is a promising strategy to convert carbon dioxide into value-added fuels and chemicals with efficient sunlight utilization. Nevertheless, there are many shortcomings, such as high photogenerated electron–hole recombination rate and poor light stability, that hinder the further development of artificial photosynthesis. Thus, inspired by the natural photosynthesis of green plants, a 3D spatial reticulation all-solid-state artificial direct Z-scheme photocatalyst is manufactured to solve the above problems by using a graphite phase carbon nitride (g-C3N4) shell encapsulating Cu2O nanowire arrays/Cu mesh (g-C3N4/Cu2O NAs/CM). Consequently, the CH3OH formation rate and the selectivity of g-C3N4/Cu2O NAs reached 22.6 ppm cm–2 h–1 and 94.9% under solar light irradiation, respectively. More importantly, the material retained 94.7% of its primary catalytic activity after 60 h test (ten reaction cycles). It is attributed to the protective g-C3N4 layer and the synergetic effect between interface carrier separation modulation and relatively short radial transmission channel design. This strategy provides unique insights into the design and preparation of efficient practical photocatalysts for energy synthesis.
科研通智能强力驱动
Strongly Powered by AbleSci AI