深能级瞬态光谱
光谱学
带隙
材料科学
光致发光
肖特基二极管
肖特基势垒
分析化学(期刊)
二极管
光电子学
化学
物理
硅
色谱法
量子力学
作者
Z. Zhang,Esmat Farzana,Aaron R. Arehart,Steven A. Ringel
摘要
Deep level optical spectroscopy (DLOS) and deep level transient spectroscopy (DLTS) measurements performed on Ni/β-Ga2O3 Schottky diodes fabricated on unintentionally doped (010) substrates prepared by edge-defined film-fed growth revealed a rich spectrum of defect states throughout the 4.84 eV bandgap of β-Ga2O3. Five distinct defect states were detected at EC − 0.62 eV, 0.82 eV, 1.00 eV, 2.16 eV, and 4.40 eV. The EC − 0.82 eV and 4.40 eV levels are dominant, with concentrations on the order of 1016 cm−3. The three DLTS-detected traps at EC − 0.62 eV, 0.82 eV, and 1.00 eV are similar to traps reported in Czochralski-grown β-Ga2O3, [K. Irmscher et al., J. Appl. Phys. 110, 063720 (2011)], suggesting possibly common sources. The DLOS-detected states at EC − 2.16 eV and 4.40 eV exhibit significant lattice relaxation effects in their optical transitions associated with strongly bound defects. As a consequence of this study, the Ni/β-Ga2O3 (010) Schottky barrier height was determined to be 1.55 eV, with good consistency achieved between different characterization techniques.
科研通智能强力驱动
Strongly Powered by AbleSci AI