亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting Depression among Patients with Diabetes Using Longitudinal Data

萧条(经济学) 医学 纵向数据 糖尿病 纵向研究 内科学 人口学 内分泌学 病理 社会学 经济 宏观经济学
作者
Haomiao Jin,Shinyi Wu,Irene Vidyanti,Paul Di Capua,Brian Wu
出处
期刊:Methods of Information in Medicine [Thieme Medical Publishers (Germany)]
卷期号:54 (06): 553-559 被引量:35
标识
DOI:10.3414/me14-02-0009
摘要

Summary Introduction: This article is part of the Focus Theme of Methods of Information in Medicine on “Big Data and Analytics in Healthcare”. Background: Depression is a common and often undiagnosed condition for patients with diabetes. It is also a condition that significantly impacts healthcare outcomes, use, and cost as well as elevating suicide risk. Therefore, a model to predict depression among diabetes patients is a promising and valuable tool for providers to proactively assess depressive symptoms and identify those with depression. Objectives: This study seeks to develop a generalized multilevel regression model, using a longitudinal data set from a recent large-scale clinical trial, to predict depression severity and presence of major depression among patients with diabetes. Methods: Severity of depression was measured by the Patient Health Questionnaire PHQ-9 score. Predictors were selected from 29 candidate factors to develop a 2-level Poisson regression model that can make population-average predictions for all patients and subject-specific predictions for individual patients with historical records. Newly obtained patient records can be incorporated with historical records to update the prediction model. Root-mean-square errors (RMSE) were used to evaluate predictive accuracy of PHQ-9 scores. The study also evaluated the classification ability of using the predicted PHQ-9 scores to classify patients as having major depression. Results: Two time-invariant and 10 time-varying predictors were selected for the model. Incorporating historical records and using them to update the model may improve both predictive accuracy of PHQ-9 scores and classification ability of the predicted scores. Subject-specific predictions (for individual patients with historical records) achieved RMSE about 4 and areas under the receiver operating characteristic (ROC) curve about 0.9 and are better than population-average predictions. Conclusions: The study developed a generalized multilevel regression model to predict depression and demonstrated that using generalized multilevel regression based on longitudinal patient records can achieve high predictive ability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Virtual给木木枭的求助进行了留言
22秒前
44秒前
Nichols完成签到,获得积分10
1分钟前
顾矜应助Willing采纳,获得30
1分钟前
jiangjiang完成签到 ,获得积分10
1分钟前
瘦瘦的枫叶完成签到 ,获得积分10
1分钟前
1分钟前
Virtual举报无心的怜烟求助涉嫌违规
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
3分钟前
4分钟前
Chonger发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
爆米花应助Chonger采纳,获得10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
飞快的孱完成签到,获得积分10
5分钟前
6分钟前
边疆完成签到,获得积分10
6分钟前
6分钟前
科研通AI6应助科研通管家采纳,获得10
6分钟前
7分钟前
7分钟前
7分钟前
赵一完成签到 ,获得积分10
8分钟前
8分钟前
dynamoo发布了新的文献求助200
8分钟前
9分钟前
李爱国应助迷人叫兽采纳,获得10
9分钟前
不是省油的灯完成签到 ,获得积分10
9分钟前
10分钟前
10分钟前
迷人叫兽发布了新的文献求助10
10分钟前
10分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
10分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4527818
求助须知:如何正确求助?哪些是违规求助? 3967266
关于积分的说明 12293720
捐赠科研通 3632363
什么是DOI,文献DOI怎么找? 1999316
邀请新用户注册赠送积分活动 1035487
科研通“疑难数据库(出版商)”最低求助积分说明 925222