Supervised learning of high-confidence phenotypic subpopulations from single-cell data

表型 计算生物学 特征选择 降维 计算机科学 可扩展性 范畴变量 生物 机器学习 人工智能 基因 遗传学 数据库
作者
Tao Ren,Canping Chen,Alexey V. Danilov,Susan Liu,Xiangnan Guan,Shunyi Du,Xiwei Wu,Mara H. Sherman,Paul T. Spellman,Lisa M. Coussens,Andrew Adey,Gordon B. Mills,Ling‐Yun Wu,Zheng Xia
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:5 (5): 528-541 被引量:5
标识
DOI:10.1038/s42256-023-00656-y
摘要

Accurately identifying phenotype-relevant cell subsets from heterogeneous cell populations is crucial for delineating the underlying mechanisms driving biological or clinical phenotypes. Here by deploying a Learning with Rejection strategy, we developed a novel supervised learning framework called PENCIL to identify subpopulations associated with categorical or continuous phenotypes from single-cell data. By embedding a feature selection function into this flexible framework, for the first time, we were able to simultaneously select informative features and identify cell subpopulations, enabling accurate identification of phenotypic subpopulations otherwise missed by methods incapable of concurrent gene selection. Furthermore, the regression mode of PENCIL presents a novel ability for supervised phenotypic trajectory learning of subpopulations from single-cell data. We conducted comprehensive simulations to evaluate PENCIL's versatility in simultaneous gene selection, subpopulation identification and phenotypic trajectory prediction. PENCIL is fast and scalable to analyse one million cells within 1 h. Using the classification mode, PENCIL detected T-cell subpopulations associated with melanoma immunotherapy outcomes. Moreover, when applied to single-cell RNA sequencing of a patient with mantle cell lymphoma with drug treatment across multiple timepoints, the regression mode of PENCIL revealed a transcriptional treatment response trajectory. Collectively, our work introduces a scalable and flexible infrastructure to accurately identify phenotype-associated subpopulations from single-cell data. To detect phenotype-related cell subpopulations from single-cell data, appropriate feature sets need to be chosen or learned simultaneously. Ren et al. present here a tool based on Learning with Rejection, a method that during training learns features from cells that can be predicted with high confidence, while cells that the model is not yet certain about are rejected.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助Leeny采纳,获得10
1秒前
3秒前
nana发布了新的文献求助10
3秒前
粥粥卷发布了新的文献求助10
5秒前
5秒前
qixiiii发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
www发布了新的文献求助10
9秒前
ZZ发布了新的文献求助10
9秒前
虚幻初之发布了新的文献求助10
10秒前
11秒前
11秒前
周心雨发布了新的文献求助10
12秒前
moshi发布了新的文献求助10
12秒前
13秒前
明亮的书双完成签到,获得积分10
13秒前
QIN完成签到,获得积分10
13秒前
气味发布了新的文献求助10
13秒前
hakunamatata完成签到 ,获得积分10
13秒前
14秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
Lucas应助科研通管家采纳,获得30
15秒前
CodeCraft应助科研通管家采纳,获得10
15秒前
英俊的铭应助科研通管家采纳,获得10
15秒前
隐形曼青应助科研通管家采纳,获得10
15秒前
枫叶应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
SciGPT应助虚幻初之采纳,获得10
17秒前
zhl发布了新的文献求助10
17秒前
Leeny发布了新的文献求助10
18秒前
18秒前
Natsu完成签到,获得积分10
18秒前
第八大洋完成签到,获得积分10
19秒前
研友_VZG7GZ应助轩少的采纳,获得10
19秒前
慕青应助Annabelle采纳,获得10
19秒前
123完成签到,获得积分10
20秒前
20秒前
搜集达人应助豆乳嘟嘟采纳,获得10
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787206
求助须知:如何正确求助?哪些是违规求助? 3332832
关于积分的说明 10257666
捐赠科研通 3048201
什么是DOI,文献DOI怎么找? 1673028
邀请新用户注册赠送积分活动 801580
科研通“疑难数据库(出版商)”最低求助积分说明 760287