Supervised learning of high-confidence phenotypic subpopulations from single-cell data

表型 计算生物学 特征选择 降维 计算机科学 可扩展性 范畴变量 生物 机器学习 人工智能 基因 遗传学 数据库
作者
Tao Ren,Canping Chen,Alexey V. Danilov,Susan Liu,Xiangnan Guan,Shunyi Du,Xiwei Wu,Mara H. Sherman,Paul T. Spellman,Lisa M. Coussens,Andrew Adey,Gordon B. Mills,Ling‐Yun Wu,Zheng Xia
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:5 (5): 528-541 被引量:7
标识
DOI:10.1038/s42256-023-00656-y
摘要

Accurately identifying phenotype-relevant cell subsets from heterogeneous cell populations is crucial for delineating the underlying mechanisms driving biological or clinical phenotypes. Here by deploying a Learning with Rejection strategy, we developed a novel supervised learning framework called PENCIL to identify subpopulations associated with categorical or continuous phenotypes from single-cell data. By embedding a feature selection function into this flexible framework, for the first time, we were able to simultaneously select informative features and identify cell subpopulations, enabling accurate identification of phenotypic subpopulations otherwise missed by methods incapable of concurrent gene selection. Furthermore, the regression mode of PENCIL presents a novel ability for supervised phenotypic trajectory learning of subpopulations from single-cell data. We conducted comprehensive simulations to evaluate PENCIL's versatility in simultaneous gene selection, subpopulation identification and phenotypic trajectory prediction. PENCIL is fast and scalable to analyse one million cells within 1 h. Using the classification mode, PENCIL detected T-cell subpopulations associated with melanoma immunotherapy outcomes. Moreover, when applied to single-cell RNA sequencing of a patient with mantle cell lymphoma with drug treatment across multiple timepoints, the regression mode of PENCIL revealed a transcriptional treatment response trajectory. Collectively, our work introduces a scalable and flexible infrastructure to accurately identify phenotype-associated subpopulations from single-cell data. To detect phenotype-related cell subpopulations from single-cell data, appropriate feature sets need to be chosen or learned simultaneously. Ren et al. present here a tool based on Learning with Rejection, a method that during training learns features from cells that can be predicted with high confidence, while cells that the model is not yet certain about are rejected.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chun发布了新的文献求助10
刚刚
刚刚
CQCQ发布了新的文献求助30
刚刚
星辰大海应助詹子阳采纳,获得10
刚刚
打打应助是我呀小夏采纳,获得10
1秒前
yixuan关注了科研通微信公众号
1秒前
1秒前
1秒前
wxbroute发布了新的文献求助10
2秒前
范炎炎完成签到,获得积分10
2秒前
2秒前
纪秋发布了新的文献求助10
2秒前
2秒前
科研通AI5应助赵嘉欣采纳,获得10
3秒前
QianShenYu完成签到,获得积分10
3秒前
想看不眠日记完成签到,获得积分10
3秒前
pan发布了新的文献求助10
3秒前
4秒前
Bottle完成签到,获得积分10
4秒前
4秒前
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
领导范儿应助是我呀小夏采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
jasmine发布了新的文献求助10
6秒前
Lny应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4747582
求助须知:如何正确求助?哪些是违规求助? 4094602
关于积分的说明 12668626
捐赠科研通 3806740
什么是DOI,文献DOI怎么找? 2101578
邀请新用户注册赠送积分活动 1126903
关于科研通互助平台的介绍 1003479