Detecting the risk of bullying victimization among adolescents: A large-scale machine learning approach

随机森林 朴素贝叶斯分类器 决策树 逻辑回归 机器学习 心理学 比例(比率) 人工智能 计算机科学 Boosting(机器学习) 支持向量机 地理 地图学
作者
Wei Yan,Yidan Yuan,Menghao Yang,Peng Zhang,Kaiping Peng
出处
期刊:Computers in Human Behavior [Elsevier]
卷期号:147: 107817-107817 被引量:34
标识
DOI:10.1016/j.chb.2023.107817
摘要

There is an increasing interest in using machine learning methods to identify risk factors for problematic behaviors. The current study tested and compared six machine learning algorithms: Logistic Regression, Naive Bayes, Decision Tree, Random Forest, K-Nearest Neighbors (KNN), and Light Gradient Boosting Machine (LightGBM), to detect risk factors for both traditional bullying victimization and cyberbullying victimization among Chinese adolescents. The Random Forest algorithm and LightGBM algorithm obtained similar accuracy and precision, and outperformed other four algorithms. We then combined the feature importance of LightGBM and Random Forest algorithms to evaluate the predictive power of 40 potentially relevant personal, educational, social and psychological factors in predicting bullying victimization, achieving better accuracy and higher performance. These results showed that the combined model can distinguish high-risk and low-risk adolescents for both types of bullying victimization based on a few easy-to-find variables. By comparing the relative significance of each factor, the current study also found mental illness, physical illness, and unhealthy living environments as having the highest values in predicting bullying victimization. Thus, the recommended model has a great application value in preventing bullying victimization among Chinese adolescents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ahhhhhh发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
浮游应助阳光的安波采纳,获得10
1秒前
英姑应助彭星星采纳,获得10
1秒前
MphyLaw发布了新的文献求助10
1秒前
1秒前
Pshan完成签到,获得积分10
2秒前
2秒前
妮儿发布了新的文献求助10
2秒前
隐形曼青应助空白采纳,获得10
2秒前
3秒前
哈哈发布了新的文献求助10
3秒前
H-C完成签到,获得积分10
3秒前
3秒前
4秒前
wanci应助夏花采纳,获得10
4秒前
5秒前
abby发布了新的文献求助30
5秒前
华仔应助感动水杯采纳,获得10
5秒前
5秒前
6秒前
6秒前
FashionBoy应助ahhhhhh采纳,获得10
6秒前
6秒前
xiaoxiao完成签到,获得积分10
7秒前
123发布了新的文献求助10
7秒前
7秒前
7秒前
lavendaer发布了新的文献求助10
7秒前
7秒前
7秒前
Pioneer完成签到 ,获得积分10
8秒前
triumfc完成签到,获得积分10
8秒前
8秒前
脑洞疼应助熙怡采纳,获得10
8秒前
8秒前
bbihk完成签到,获得积分10
9秒前
小王发布了新的文献求助10
9秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338124
求助须知:如何正确求助?哪些是违规求助? 4475332
关于积分的说明 13928100
捐赠科研通 4370553
什么是DOI,文献DOI怎么找? 2401309
邀请新用户注册赠送积分活动 1394430
关于科研通互助平台的介绍 1366313