Spatial identification and multilevel zoning of land use functions improve sustainable regional management: a case study of the Yangtze River Economic Belt, China

分区 地理 土地利用 地形 中国 可持续发展 优势(遗传学) 环境资源管理 环境科学 地图学 生态学 土木工程 工程类 基因 化学 生物化学 考古 生物
作者
Yunxiao Gao,Zhanqi Wang,Liguo Zhang,Ji Chai
出处
期刊:Environmental Science and Pollution Research [Springer Science+Business Media]
卷期号:30 (10): 27782-27798 被引量:4
标识
DOI:10.1007/s11356-022-24033-1
摘要

The quantitative identification and zoning management of land use functions (LUFs) are important starting points for solving the problems of resource allocation and sustainable development. In this study, with the Yangtze River Economic Belt (YREB) as the case study area, LUFs were grouped into three primary categories: economic function (ENF), social function (SCF), and ecological function (ELF). The least square error model was adopted to identify the morphological changes of LUFs. A two-dimensional discriminant matrix of the dynamic degree of LUF change and terrain niche index was constructed to explain the terrain gradient effect of LUFs. Bivariate local spatial autocorrelation was used to analyze the trade-offs in 2018 between ELF and ENF, and ELF and SCF. Finally, a new multilevel zoning scheme for LUFs was proposed. The results showed that from 1990 to 2018, ENF increased rapidly in cities along the Yangtze River, the overall level of SCF declined, and ELF in the south of the Yangtze River was better than that in the north. LUFs' morphological zoning exhibited significant regional differences. SCF-ELF combination areas and ELF dominance areas were mainly optimized in the second-level zoning. The areas with weak ELF were concentrated in the east of the YREB. Based on these results, nine kinds of LUF zonings and six kinds of major functional zonings were devised, and policy allocation was arranged for each zoning to improve the efficiency of spatial zoning management. Our research provides a reference for large-scale regional sustainable development and land use zoning management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周周发布了新的文献求助10
1秒前
文武兼备完成签到,获得积分10
2秒前
英姑应助cyy采纳,获得30
3秒前
zhishui完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
9秒前
大个应助无情的宛儿采纳,获得10
9秒前
田様应助June采纳,获得10
10秒前
吉大李四发布了新的文献求助10
11秒前
SciGPT应助周周采纳,获得10
12秒前
Bin完成签到,获得积分10
19秒前
独家双层汉堡完成签到,获得积分10
22秒前
22秒前
李健的粉丝团团长应助zyx采纳,获得10
25秒前
shuang0116发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
26秒前
神奇的光子完成签到,获得积分10
26秒前
追寻的雁完成签到,获得积分10
26秒前
32秒前
33秒前
33秒前
liao发布了新的文献求助10
33秒前
CodeCraft应助297同学采纳,获得10
34秒前
柚子皮发布了新的文献求助15
36秒前
shoooot发布了新的文献求助20
37秒前
37秒前
38秒前
zyx发布了新的文献求助10
39秒前
gyjk发布了新的文献求助10
40秒前
yuki发布了新的文献求助10
40秒前
勤劳梦曼发布了新的文献求助10
43秒前
43秒前
45秒前
297同学发布了新的文献求助10
46秒前
科研通AI2S应助liusoojoo采纳,获得10
48秒前
小编一枚完成签到 ,获得积分10
48秒前
yangjoy发布了新的文献求助10
49秒前
你好好好发布了新的文献求助10
50秒前
916应助科研通管家采纳,获得10
51秒前
51秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3865390
求助须知:如何正确求助?哪些是违规求助? 3407686
关于积分的说明 10655469
捐赠科研通 3131809
什么是DOI,文献DOI怎么找? 1727297
邀请新用户注册赠送积分活动 832240
科研通“疑难数据库(出版商)”最低求助积分说明 780189