DLNLF-net: Denoised local and non-local deep features fusion network for malignancy characterization of hepatocellular carcinoma

人工智能 卷积神经网络 计算机科学 模式识别(心理学) 特征提取 特征(语言学) 肝细胞癌 深度学习 医学 语言学 哲学 癌症研究
作者
Haoyuan Huang,Yanyan Xie,Guangyi Wang,Lijuan Zhang,Wu Zhou
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:227: 107201-107201
标识
DOI:10.1016/j.cmpb.2022.107201
摘要

Hepatocellular carcinoma (HCC) is a primary liver cancer with high mortality rate. The degree of HCC malignancy is an important prognostic factor for predicting recurrence and survival after surgical resection or liver transplantation in clinical practice. Currently, deep features obtained from data-driven machine learning algorithms have demonstrated superior performance in characterising lesion features in medical imaging processing. However, previous convolutional neural network (CNN)-based studies on HCC lesion characterisation were based on traditional local deep features. The aim of this study was to propose a denoised local and non-local deep features fusion network (DLNLF-net) for grading HCC. Gadolinium-diethylenetriaminepentaacetic-acid-enhanced magnetic resonance imaging data of 117 histopathologically proven HCCs were collected from 112 patients with resected HCC between October 2012 and October 2018. The proposed DLNLF-net primarily consists of three modules: feature denoising, non-local feature extraction, and bilinear kernel fusion. First, local feature maps were extracted from the original tumour images using convolution operations, followed by a feature denoising block to generate denoised local features. Simultaneously, a non-local feature extraction block was employed on the local feature maps to generate non-local features. Finally, the two generated features were fused using a bilinear kernel model to output the classification results. The dataset was divided into a training set (77 HCC images) and an independent test set (40 HCC images). Training and independent testing were repeated five times to reduce measurement errors. Accuracy, sensitivity, specificity, and area under the curve (AUC) values in the five repetitive tests were calculated to evaluate the performance of the proposed method. Denoised local features (AUC 89.19%) and non-local features (AUC 88.28%) showed better performance than local features (AUC 86.21%) and global average pooling features (AUC 87.1%) that were derived from a CNN for malignancy characterisation of HCC. Furthermore, the proposed DLNFL-net yielded superior performance (AUC 94.89%) than a typical 3D CNN (AUC 86.21%), bilinear CNN (AUC 90.46%), recently proposed local and global diffusion method (AUC 93.94%), and convolutional block attention module method (AUC 93.62%) for malignancy characterisation of HCC. The non-local operation demonstrated a better capability of yielding global representation, and feature denoising based on the non-local operation achieved performance gains for lesion characterisation. The proposed DLNLF-net, which integrates denoised local and non-local deep features, evidently outperforms conventional CNN-based methods in the malignancy characterisation of HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜美的兔子完成签到,获得积分10
3秒前
4秒前
bkagyin应助迅速的八宝粥采纳,获得10
5秒前
5秒前
Nick完成签到,获得积分10
6秒前
慎ming发布了新的文献求助80
8秒前
zyc发布了新的文献求助10
9秒前
Sicily发布了新的文献求助10
9秒前
11秒前
NexusExplorer应助xgx984采纳,获得10
12秒前
13秒前
Emper发布了新的文献求助10
16秒前
你博哥完成签到 ,获得积分10
18秒前
欢呼流沙发布了新的文献求助10
18秒前
在水一方应助Sicily采纳,获得10
20秒前
Ava应助爱撒娇的凝安采纳,获得10
22秒前
23秒前
24秒前
顾矜应助威士忌www采纳,获得10
25秒前
科研通AI5应助谦让忆文采纳,获得10
27秒前
herschelwu发布了新的文献求助10
27秒前
忧伤的飞机完成签到,获得积分10
27秒前
28秒前
111完成签到 ,获得积分10
28秒前
28秒前
29秒前
29秒前
子非鱼发布了新的文献求助10
29秒前
30秒前
纯情的天奇完成签到 ,获得积分10
32秒前
105发布了新的文献求助30
32秒前
33秒前
33秒前
34秒前
浩浩发布了新的文献求助10
35秒前
卢敏明发布了新的文献求助10
35秒前
乔达摩悉达多完成签到 ,获得积分10
35秒前
调皮的绿真完成签到,获得积分10
37秒前
Wizard发布了新的文献求助10
38秒前
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780550
求助须知:如何正确求助?哪些是违规求助? 3326021
关于积分的说明 10225203
捐赠科研通 3041114
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799021
科研通“疑难数据库(出版商)”最低求助积分说明 758669