MAGF-Net: A multiscale attention-guided fusion network for retinal vessel segmentation

计算机科学 分割 增采样 人工智能 块(置换群论) 联营 卷积神经网络 模式识别(心理学) 特征(语言学) 深度学习 计算机视觉 图像(数学) 几何学 数学 语言学 哲学
作者
Jianyong Li,Ge Gao,Yanhong Liu,Lei Yang
出处
期刊:Measurement [Elsevier BV]
卷期号:206: 112316-112316 被引量:37
标识
DOI:10.1016/j.measurement.2022.112316
摘要

Retinal fundus images contain plenty of morphological information, so it is particularly important to realize precise segmentation of the retinal vessels for clinical diagnosis. With the rapid development of deep convolutional neural networks (DCNNs), to replace earlier manual labeling methods and reduce the labor cost, DCNN-based automatic segmentation methods have been greatly developed. U-Net and its variant models have obtained superior performance, but segmentation tasks are still challenging for the following reasons: First, features from encoders and decoders are not sufficiently fused to retain more effective information. Second, the limited receptive field will also affect contextual information extraction. In addition, although the continuous pooling operations can speed up the segmentation network training efficiency, they also lose detailed information during the downsampling process. To address the above issues and precisely segment the vessel structures from fundus images, a multiscale attention-guided fusion network, called MAGF-Net, is presented for automatic retinal vessel segmentation. To capture multiscale contextual features, a multiscale attention (MSA) block is proposed to construct the backbone network. Furthermore, a feature enhancement (FE) block is also proposed and embedded in the bottleneck layer to acquire global multiscale contextual information. To take full advantage of the channel information from deep layers and the spatial information from shallow layers, an attention-guided fusion (AGF) block is designed to fuse features from different network layers. Moreover, a hybrid feature pooling (HFP) block is employed to preserve more information during the downsampling operation. To evaluate the segmentation performance of the proposed MAGF-Net, extensive segmentation experiments are conducted on three public datasets: the CHASE_DB1 set, the DRIVE set and the STARE set. The experimental results show that the proposed MAGF-Net can obtain remarkable segmentation performance compared with other advanced methods. In particular, the ability of the proposed MAGF-Net to segment thin blood vessels is significantly improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李群发布了新的文献求助10
1秒前
小饼饼完成签到,获得积分10
2秒前
乐观道之完成签到,获得积分10
2秒前
司徒文青应助调皮黑猫采纳,获得30
2秒前
2秒前
gx发布了新的文献求助10
2秒前
3秒前
5秒前
ty-完成签到,获得积分10
5秒前
爱看文献的七七完成签到,获得积分10
6秒前
6秒前
6秒前
MED完成签到,获得积分10
6秒前
懵懂的怜南发布了新的文献求助100
6秒前
7秒前
ZWZ发布了新的文献求助20
7秒前
7秒前
喜悦的秋烟完成签到,获得积分10
8秒前
盐水z完成签到,获得积分10
8秒前
邵弓宇完成签到,获得积分10
9秒前
b15966013195完成签到,获得积分20
9秒前
阿占完成签到,获得积分10
9秒前
10秒前
OGN完成签到,获得积分10
10秒前
Garfieldlilac发布了新的文献求助10
10秒前
10秒前
10秒前
爱笑完成签到 ,获得积分10
10秒前
11秒前
12秒前
li发布了新的文献求助10
12秒前
12秒前
DumBell发布了新的文献求助10
13秒前
iv吃饭发布了新的文献求助30
13秒前
栗子发布了新的文献求助10
13秒前
13秒前
Owen应助Clara凤采纳,获得10
14秒前
不上课不行完成签到,获得积分10
14秒前
斯文败类应助陈小白采纳,获得30
16秒前
chun发布了新的文献求助10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793698
求助须知:如何正确求助?哪些是违规求助? 3338599
关于积分的说明 10290546
捐赠科研通 3055010
什么是DOI,文献DOI怎么找? 1676285
邀请新用户注册赠送积分活动 804326
科研通“疑难数据库(出版商)”最低求助积分说明 761836