Unsupervised Few-Shot Image Classification by Learning Features into Clustering Space

聚类分析 计算机科学 人工智能 模式识别(心理学) 图像(数学) 集合(抽象数据类型) 上下文图像分类 无监督学习 透视图(图形) 弹丸 可视化 机器学习 有机化学 化学 程序设计语言
作者
Shuo Li,Fang Liu,Zehua Hao,Kaibo Zhao,Licheng Jiao
出处
期刊:Lecture Notes in Computer Science 卷期号:: 420-436 被引量:12
标识
DOI:10.1007/978-3-031-19821-2_24
摘要

Most few-shot image classification methods are trained based on tasks. Usually, tasks are built on base classes with a large number of labeled images, which consumes large effort. Unsupervised few-shot image classification methods do not need labeled images, because they require tasks to be built on unlabeled images. In order to efficiently build tasks with unlabeled images, we propose a novel single-stage clustering method: Learning Features into Clustering Space (LF2CS), which first set a separable clustering space by fixing the clustering centers and then use a learnable model to learn features into the clustering space. Based on our LF2CS, we put forward an image sampling and c-way k-shot task building method. With this, we propose a novel unsupervised few-shot image classification method, which jointly learns the learnable model, clustering and few-shot image classification. Experiments and visualization show that our LF2CS has a strong ability to generalize to the novel categories. From the perspective of image sampling, we implement four baselines according to how to build tasks. We conduct experiments on the Omniglot, miniImageNet, tieredImageNet and CIFARFS datasets based on the Conv-4 and ResNet-12 backbones. Experimental results show that ours outperform the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助zjcbk985采纳,获得10
刚刚
Azer发布了新的文献求助10
1秒前
1秒前
不学无术完成签到,获得积分10
1秒前
2秒前
书晨发布了新的文献求助10
4秒前
害怕的灯泡完成签到,获得积分10
4秒前
5秒前
李金玉发布了新的文献求助10
5秒前
想飞的猪发布了新的文献求助10
5秒前
Azer完成签到,获得积分10
5秒前
情怀应助小脸红扑扑采纳,获得10
6秒前
6秒前
7秒前
7秒前
研友_VZG7GZ应助小铭的男仆采纳,获得10
7秒前
7秒前
馆长应助害怕的灯泡采纳,获得10
7秒前
丘比特应助清澈水眸采纳,获得10
8秒前
科研通AI2S应助清澈水眸采纳,获得10
8秒前
LMW应助清澈水眸采纳,获得10
8秒前
8秒前
加贝完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
zcnsdtc1991完成签到,获得积分10
10秒前
舒适的淇发布了新的文献求助10
10秒前
10秒前
ztt发布了新的文献求助10
11秒前
11秒前
Irene发布了新的文献求助10
11秒前
忆墙发布了新的文献求助10
12秒前
12秒前
13秒前
浮浮世世发布了新的文献求助10
13秒前
大气早晨发布了新的文献求助10
13秒前
13秒前
Jyu完成签到,获得积分20
13秒前
15秒前
晴天完成签到 ,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4608788
求助须知:如何正确求助?哪些是违规求助? 4015227
关于积分的说明 12432502
捐赠科研通 3696489
什么是DOI,文献DOI怎么找? 2038043
邀请新用户注册赠送积分活动 1071144
科研通“疑难数据库(出版商)”最低求助积分说明 955017