Feature-Fusion Segmentation Network for Landslide Detection Using High-Resolution Remote Sensing Images and Digital Elevation Model Data

计算机科学 人工智能 数字高程模型 分割 遥感 特征(语言学) 计算机视觉 模式识别(心理学) 像素 地形 图像分割 山崩 双线性插值 地质学 地图学 地理 哲学 语言学 岩土工程
作者
Xinran Liu,Yuexing Peng,Zili Lu,Wei Li,Junchuan Yu,Daqing Ge,Wei Xiang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:49
标识
DOI:10.1109/tgrs.2022.3233637
摘要

Landslide is one of the most dangerous and frequently occurred natural disasters. The semantic segmentation technique is efficient for wide area landslide identification from high-resolution remote sensing images (HRSIs). However, considerable challenges exist because the effects of sediments, vegetation, and human activities over long periods of time make visually blurred old landslides very challenging to detect based upon HRSIs. Moreover, for terrain features like slopes, aspect and altitude variations cannot be sufficiently extracted from 2-D HRSIs but can be from digital elevation model (DEM) data. Then, a feature-fusion based semantic segmentation network (FFS-Net) is proposed, which can extract texture and shape features from 2-D HRSIs and terrain features from DEM data before fusing these two distinct types of features in a higher feature layer. To segment landslides from background, a multiscale channel attention module is purposely designed to balance the low-level fine information and high-level semantic features. In the decoder, transposed convolution layer replaces original mathematical bilinear interpolation to better restore image resolution via learnable convolutional kernels, and both dropout and batch normalization (BN) are introduced to prevent over-fitting and accelerate the network convergence. Experimental results are presented to validate that the proposed FFS-Net can greatly improve the segmentation accuracy of visually blurred old landslides. Compared to U-Net and DeepLabV3+, FFS-Net can improve the mean intersection over union (mIoU) metric from 0.508 and 0.624 to 0.67, the F1 metric from 0.254 and 0.516 to 0.596, and the pixel accuracy (PA) metric from 0.874 and 0.906 to 0.92, respectively. For the detection of visually distinct landslides, FFS-NET also offers comparable detection performance, and the segmentation is improved for visually distinct landslides with similar color and texture to surroundings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
还单身的惜文完成签到,获得积分10
刚刚
刚刚
1秒前
盛天虹发布了新的文献求助10
1秒前
跳跃飞瑶发布了新的文献求助20
1秒前
曾经二娘完成签到,获得积分10
1秒前
JamesPei应助莹莹哒采纳,获得10
1秒前
3秒前
3秒前
坦率蓝血完成签到,获得积分10
3秒前
4秒前
不狗不吹完成签到,获得积分10
4秒前
白水发布了新的文献求助50
4秒前
5秒前
5秒前
BX发布了新的文献求助10
5秒前
yiyi发布了新的文献求助10
5秒前
一道光发布了新的文献求助10
6秒前
可爱的函函应助www采纳,获得10
6秒前
无花果应助坦率蓝血采纳,获得10
6秒前
研友_VZG7GZ应助欣喜雅香采纳,获得10
6秒前
6秒前
长命百岁发布了新的文献求助20
6秒前
6秒前
7秒前
7秒前
斯文败类应助早睡采纳,获得10
8秒前
8秒前
8秒前
LUOLU完成签到,获得积分10
8秒前
9秒前
无花果应助不狗不吹采纳,获得10
9秒前
bin发布了新的文献求助10
9秒前
xxxBlo发布了新的文献求助10
9秒前
鲤鱼怀绿完成签到,获得积分10
10秒前
肉卷发布了新的文献求助10
10秒前
冬菊完成签到 ,获得积分10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
papa发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5769365
求助须知:如何正确求助?哪些是违规求助? 5579538
关于积分的说明 15421436
捐赠科研通 4903042
什么是DOI,文献DOI怎么找? 2638103
邀请新用户注册赠送积分活动 1586002
关于科研通互助平台的介绍 1541075