高光谱成像
计算机科学
模式识别(心理学)
人工智能
转化(遗传学)
树(集合论)
光学(聚焦)
空间分析
上下文图像分类
数学形态学
遥感
图像(数学)
图像处理
数学
地理
数学分析
物理
化学
光学
基因
生物化学
作者
Mengmeng Zhang,Wei Li,Xudong Zhao,Huan Liu,Ran Tao,Qian Du
标识
DOI:10.1109/tgrs.2022.3233847
摘要
Hyperspectral image (HSI) consists of abundant spectral and spatial characteristics, which contribute to a more accurate identification of materials and land covers. However, most existing methods of hyperspectral image analysis primarily focus on spectral knowledge or coarse-grained spatial information while neglecting the fine-grained morphological structures. In the classification task of complex objects, spatial morphological differences can help to search for the boundary of fine-grained classes, e.g., forestry tree species. Focusing on subtle traits extraction, a spatial-logical aggregation network (SLA-NET) is proposed with morphological transformation for tree species classification. The morphological operators are effectively embedded with the trainable structuring elements, which contributes to distinctive morphological representations. We evaluate the classification performance of the proposed method on two tree species datasets, and the results demonstrate that the proposed SLA-NET significantly outperforms the other state-of-the-art classifiers.
科研通智能强力驱动
Strongly Powered by AbleSci AI