Prognostic Significance of Computed Tomography‐Derived Fractional Flow Reserve for Long‐Term Outcomes in Individuals With Coronary Artery Disease

医学 部分流量储备 危险系数 冠状动脉疾病 内科学 心脏病学 比例危险模型 心肌梗塞 回顾性队列研究 计算机断层血管造影 放射科 血管造影 冠状动脉造影 置信区间
作者
Zhennan Li,Tingting Xu,Zhiqiang Wang,Yaodong Ding,Y. Zhang,Li Lin,Minxian Wang,Lei Xu,Yong Zeng
出处
期刊:Journal of the American Heart Association [Wiley]
标识
DOI:10.1161/jaha.124.037988
摘要

Background Data on the predictive value of coronary computed tomography angiography–derived fractional flow reserve (CT‐FFR) for long‐term outcomes are limited. Methods and Results A retrospective pooled analysis of individual patient data was performed. Deep‐learning‐based CT‐FFR was calculated. All patients enrolled were followed‐up for at least 5 years. The primary outcome was major adverse cardiovascular events. The secondary outcome was death or nonfatal myocardial infarction. Predictive abilities for outcomes were compared among 3 models (model 1, constructed using clinical variables; model 2, model 1+coronary computed tomography angiography–derived anatomical parameters; and model 3, model 2+CT‐FFR). A total of 2566 patients (median age, 60 [53–65] years; 56.0% men) with coronary artery disease were included. During a median follow‐up time of 2197 (2127–2386) days, 237 patients (9.2%) experienced major adverse cardiovascular events. In multivariable‐adjusted Cox models, CT‐FFR≤0.80 (hazard ratio [HR], 5.05 [95% CI, 3.64–7.01]; P <0.001) exhibited robust predictive value. The discriminant ability was higher in model 2 than in model 1 (Harrell's C‐statistics, 0.79 versus 0.64; P <0.001) and was further promoted by adding CT‐FFR to model 3 (Harrell's C‐statistics, 0.83 versus 0.79; P <0.001). Net reclassification improvement was 0.264 ( P <0.001) for model 2 beyond model 1. Of note, compared with model 2, model 3 also exhibited improvement (net reclassification improvement=0.085; P =0.001). As for predicting death or nonfatal myocardial infarction, only incorporating CT‐FFR into model 3 showed improved reclassification (net reclassification improvement=0.131; P =0.021). Conclusions CT‐FFR provides strong and incremental prognostic information for predicting long‐term outcomes. The combined models incorporating CT‐FFR exhibit modest improvement of prediction abilities, which may aid in risk stratification and decision‐making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助shengyou采纳,获得10
刚刚
刚刚
科目三应助科研通管家采纳,获得10
2秒前
vee应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
chen应助科研通管家采纳,获得20
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
vee应助科研通管家采纳,获得10
2秒前
2秒前
英姑应助科研通管家采纳,获得10
2秒前
3秒前
SYLH应助欧皇采纳,获得10
3秒前
卓天宇完成签到,获得积分10
3秒前
3秒前
3秒前
君君发布了新的文献求助10
4秒前
科研通AI5应助星辰不坠落采纳,获得10
4秒前
hahhhhhh2完成签到,获得积分10
4秒前
土豆完成签到,获得积分10
6秒前
拉长的冷霜完成签到,获得积分10
7秒前
苹果亦云发布了新的文献求助10
7秒前
9秒前
10秒前
11秒前
13秒前
执着的导师完成签到 ,获得积分10
13秒前
爆米花应助luis采纳,获得10
15秒前
16秒前
图雄争霸发布了新的文献求助10
16秒前
汪睿发布了新的文献求助10
17秒前
科研通AI5应助单纯的嘉懿采纳,获得10
18秒前
陶醉的蜜蜂完成签到 ,获得积分10
20秒前
dsjlove发布了新的文献求助10
21秒前
无敌大流流完成签到,获得积分10
21秒前
小黄人完成签到,获得积分10
22秒前
Shylie发布了新的文献求助10
23秒前
SciGPT应助得劲采纳,获得10
24秒前
舒心魂幽应助文件撤销了驳回
26秒前
27秒前
27秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824368
求助须知:如何正确求助?哪些是违规求助? 3366662
关于积分的说明 10441995
捐赠科研通 3085959
什么是DOI,文献DOI怎么找? 1697631
邀请新用户注册赠送积分活动 816447
科研通“疑难数据库(出版商)”最低求助积分说明 769640