Integrated cerebellar radiomic‐network model for predicting mild cognitive impairment in Alzheimer's disease

认知障碍 疾病 认知 神经科学 心理学 病理 医学
作者
Yini Chen,Yiwei Qi,Yiying Hu,Xinhui Qiu,Tao Qiu,Song Li,Meichen Liu,Qiqi Jia,Bo Sun,Cong Liu,Tianbai Li,Weidong Le
出处
期刊:Alzheimers & Dementia [Wiley]
卷期号:21 (1) 被引量:4
标识
DOI:10.1002/alz.14361
摘要

Pathological and neuroimaging alterations in the cerebellum of Alzheimer's disease (AD) patients have been documented. However, the role of cerebellum-derived radiomic and structural connectome modeling in the prediction of AD progression remains unclear. Radiomic features were extracted from magnetic resonance imaging (MRI) in the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset (n = 1319) and an in-house dataset (n = 308). Integrated machine learning models were developed to predict the conversion risk of normal cognition (NC) to mild cognitive impairment (MCI) over a 6-year follow-up. The cerebellar models outperformed hippocampal models in distinguishing MCI from NC and in predicting transitions from NC to MCI across both cohorts. Key predictors included textural features in the right III and left I and II lobules, and network properties in Vermis I and II, which were associated with cognitive decline in AD. Cerebellum-derived radiomic-network modeling shows promise as a tool for early identification and prediction of disease progression during the preclinical stage of AD. Altered cerebellar radiomic features and topological networks were identified in the subjects with mild cognitive impairment (MCI). The cerebellar radiomic-network integrated models outperformed hippocampal models in distinguishing MCI from normal cognition. The cerebellar radiomic model effectively predicts MCI risk and can stratify individuals into distinct risk categories. Specific cerebellar radiomic features are associated with cognitive impairment across various stages of amyloid beta and tau pathology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿兵发布了新的文献求助10
2秒前
伶俐的从菡完成签到,获得积分10
2秒前
4秒前
4秒前
长江完成签到 ,获得积分10
5秒前
第一废物完成签到,获得积分20
6秒前
我是老大应助娇气的芷巧采纳,获得10
7秒前
Luka应助怡然颦采纳,获得30
9秒前
9秒前
10秒前
11秒前
14秒前
15秒前
安稳先生发布了新的文献求助10
16秒前
七喜完成签到 ,获得积分10
17秒前
weishen完成签到,获得积分0
17秒前
pokexuejiao发布了新的文献求助10
19秒前
yolanda完成签到,获得积分10
21秒前
顾矜应助安稳先生采纳,获得10
23秒前
脑洞疼应助yolanda采纳,获得10
24秒前
柔软微风完成签到 ,获得积分10
25秒前
娇娇大王完成签到,获得积分10
25秒前
Bystander完成签到 ,获得积分10
27秒前
29秒前
世人千万再难遇我完成签到,获得积分20
30秒前
江楠酒发布了新的文献求助10
32秒前
於成协完成签到,获得积分10
40秒前
42秒前
panpan发布了新的文献求助10
43秒前
在水一方应助KaK采纳,获得10
44秒前
共享精神应助123嘿呀嘿呀采纳,获得10
45秒前
48秒前
54秒前
香蕉觅云应助panpan采纳,获得10
56秒前
58秒前
内向雪碧发布了新的文献求助10
59秒前
搜集达人应助aa采纳,获得10
1分钟前
科研通AI5应助麻瓜X采纳,获得10
1分钟前
踏实的盼秋完成签到,获得积分10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777347
求助须知:如何正确求助?哪些是违规求助? 3322741
关于积分的说明 10211312
捐赠科研通 3038069
什么是DOI,文献DOI怎么找? 1667051
邀请新用户注册赠送积分活动 797952
科研通“疑难数据库(出版商)”最低求助积分说明 758098