Deep learning models in Python for predicting hydrogen production: A comparative study

Python(编程语言) 均方误差 数学 统计 制氢 人工智能 计算机科学 化学 有机化学 操作系统
作者
Sheila Devasahayam
出处
期刊:Energy [Elsevier BV]
卷期号:280: 128088-128088 被引量:12
标识
DOI:10.1016/j.energy.2023.128088
摘要

This study relates to predicting hydrogen production using deep learning models. The co-gasification of biomass and plastics dataset used gasification temperature, particle size of biomass rubber seed shell (RSS) and High-Density Polyethylene (HDPE), and the amount of plastic in the mixture as the independent variables, and the amount of hydrogen produced as the dependent variable. It was found that during the co-gasification particle size is a controlling factor for hydrogen production due to the influence on surface reactions, while temperature had no significant effect. The neural network models were developed using Keras and two different architectures were compared with and without L1 and L2 regularizers. The values for L1 and L2 are determined using the gridserach: for the 1 archtecture, the ideal L1 value = 0.010; and the ideal L2 value = 0.000001 and for the 2nd architecture, The ideal L1 value is 0.100; and the ideal L2 value is 0.000010 using the lowest mean squared error values for the test sets. The mean cross-validation scores indicated that the second architecture performed better. The mean cross_val_score using the negative mean square error, for the 1st architecture, with l2 regularizers (0.000001) is determined as −20.05 (13.10) nMSE for Kfold, 10; and for the 2nd architecture l2 regularizers (0.000010) as −8.22 (7.77) nMSE for Kfold, 10, indicate the 2nd architecture performs better. The best model parameters for both architectures were determined using Grid Search CV. The best model hyperparameters using Grid Search is batch_size, 3; epochs,100; optimizer, rmsprop for the first architechure with negative mean square error, −20.95; and for the 2nd architecture, batch_size, 5; epochs,100; optimizer, adam with negative mean square error, −7.38, indicating the 2nd architecture to be a better model. The Keras Wrapper improved the performance of the model for the first architecture, but not for the second architecture. The permutation feature importance for architecture 1 (in descending order) is: size of RSS, size of HDPE, per cent plastics in mixture and temperature. For architecture 2, in descending order: size of HDPE, size of RSS, per cent plastics in mixture and temperature. Overall, the study demonstrates the potential of deep learning models for predicting hydrogen production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潇潇雨歇发布了新的文献求助10
刚刚
2秒前
wqq完成签到,获得积分10
2秒前
杨。。完成签到 ,获得积分10
3秒前
4秒前
5秒前
科研通AI5应助moufei采纳,获得10
5秒前
丘比特应助研友_89Nm7L采纳,获得10
5秒前
lhtyzcg完成签到,获得积分10
6秒前
潇潇雨歇发布了新的文献求助10
7秒前
希望天下0贩的0应助ZW采纳,获得10
7秒前
欣喜的代容完成签到 ,获得积分10
7秒前
wqq发布了新的文献求助10
8秒前
调皮寒凝发布了新的文献求助10
9秒前
徐若楠发布了新的文献求助10
10秒前
十一完成签到,获得积分10
10秒前
潇潇雨歇发布了新的文献求助10
14秒前
14秒前
今后应助tian采纳,获得10
14秒前
s橙子味日出_完成签到 ,获得积分20
14秒前
Seagull发布了新的文献求助10
18秒前
温婉的凝丹完成签到 ,获得积分10
19秒前
s橙子味日出_关注了科研通微信公众号
20秒前
22秒前
啊啊完成签到,获得积分10
27秒前
27秒前
donghai发布了新的文献求助10
29秒前
李健应助Ca采纳,获得10
29秒前
hhh发布了新的文献求助10
30秒前
33秒前
orixero应助啦啦啦采纳,获得10
33秒前
zrs发布了新的文献求助10
35秒前
36秒前
阎万怨完成签到 ,获得积分10
37秒前
大模型应助Pepsi采纳,获得10
38秒前
ZW发布了新的文献求助10
38秒前
听话的蜡烛完成签到,获得积分10
39秒前
39秒前
seven发布了新的文献求助10
41秒前
hhh完成签到,获得积分10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777911
求助须知:如何正确求助?哪些是违规求助? 3323444
关于积分的说明 10214462
捐赠科研通 3038671
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798207
科研通“疑难数据库(出版商)”最低求助积分说明 758304