Efficient Multiview Representation Learning with Correntropy and Anchor Graph

计算机科学 图形 非负矩阵分解 聚类分析 人工智能 代表(政治) 特征学习 矩阵分解 理论计算机科学 模式识别(心理学) 特征向量 物理 量子力学 政治 政治学 法学
作者
Nan Zhang,Xiaoqin Zhang,Shiliang Sun
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:: 1-14
标识
DOI:10.1109/tkde.2023.3332682
摘要

Graph-based multiview clustering methods have attracted much attention because of their ability to mine nonlinear structural information among instances. Although they perform well in many scenarios, they consume a lot of computational resources when dealing with large-scale multiview scenarios. To address this issue, we present a new insight into the anchor graph mechanism and propose a novel Nonnegative Anchor Graph Reconstruction (NAGR) model. NAGR introduces the sparse similarity graph into the symmetric matrix factorization and gets the nonnegative representation that retains the graph structural information. Thereafter, we develop a novel Efficient Multiview nonnegative Representation learning framework with Correntropy and Anchor graph (EMR-CA), which integrates multiview anchor graph reconstruction and consensus nonnegative representation learning into a unified framework. EMR-CA uses multiview anchor graph reconstruction to learn consensus nonnegative representation, where correntropy rather than F-norm is used as the approximation measurement criterion. Specifically, normalized anchor graphs of different views are decomposed into a consensus nonnegative representation and multiple view-specific representations, where the consensus representation retains the neighbor graph information between multiview instances and representative anchors on different views. Finally, the effectiveness of the proposed EMR-CA framework is verified by theoretical analysis and experimental results on large-scale realistic multiview scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SQSO完成签到,获得积分10
刚刚
刚刚
刚刚
领导范儿应助15832369693采纳,获得10
刚刚
kaifeiQi完成签到,获得积分10
1秒前
eternity136发布了新的文献求助10
1秒前
Jro完成签到,获得积分10
1秒前
老武发布了新的文献求助10
2秒前
xixi890430发布了新的文献求助10
3秒前
帆帆牛完成签到 ,获得积分10
4秒前
槿曦完成签到 ,获得积分10
5秒前
月yue发布了新的文献求助10
5秒前
lu完成签到,获得积分10
5秒前
LaTeXer应助端庄飞柏采纳,获得70
5秒前
焱焱不忘完成签到 ,获得积分10
6秒前
7秒前
大军门诊完成签到,获得积分10
8秒前
8秒前
章浩泽发布了新的文献求助10
9秒前
知性的千秋完成签到,获得积分10
9秒前
9秒前
9秒前
科研通AI5应助龙弟弟采纳,获得10
10秒前
11秒前
田様应助一条热带鱼采纳,获得10
11秒前
12秒前
哆面体完成签到,获得积分10
12秒前
13秒前
拜拜发布了新的文献求助10
14秒前
Jasper应助厚朴大师采纳,获得10
15秒前
爽爽完成签到,获得积分10
15秒前
15秒前
积极的誉完成签到,获得积分10
16秒前
纯金金发布了新的文献求助20
16秒前
欧杰发布了新的文献求助10
17秒前
积极巨人发布了新的文献求助10
18秒前
孙Tuan完成签到,获得积分10
19秒前
一条热带鱼完成签到,获得积分10
19秒前
19秒前
20秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812456
求助须知:如何正确求助?哪些是违规求助? 3356978
关于积分的说明 10384629
捐赠科研通 3074104
什么是DOI,文献DOI怎么找? 1688616
邀请新用户注册赠送积分活动 812247
科研通“疑难数据库(出版商)”最低求助积分说明 766960