亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A comparison of data augmentation methods in voice pathology detection

计算机科学 光谱图 Mel倒谱 语音识别 卷积神经网络 人工智能 模式识别(心理学) 支持向量机 深度学习 分类器(UML) 特征(语言学) 特征提取 频域 计算机视觉 语言学 哲学
作者
F. Javanmardi,Sudarsana Reddy Kadiri,Paavo Alku
出处
期刊:Computer Speech & Language [Elsevier BV]
卷期号:83: 101552-101552 被引量:5
标识
DOI:10.1016/j.csl.2023.101552
摘要

To distinguish pathological voices from healthy voices, automatic voice pathology detection systems can be built using machine learning (ML) and deep learning (DL) techniques. To fully exploit such systems, large quantities of training data are typically required. The amount of training data is, however, small in the area of pathological voice, and therefore data augmentation (DA) becomes a potential technology to artificially increase the quantity of training data. This study presents a systematic comparison between various DA methods in the detection of pathological voice, including three time domain methods (noise addition, pitch shifting and time stretching), one time-frequency domain method (SpecAugment), and two vocoder-based methods (harmonic-to-noise ratio (HNR) modification and glottal pulse length modification). Detection systems were built using four popular spectral feature representations (static mel-frequency cepstral coefficients (MFCCs), dynamic MFCCs, spectrogram and mel-spectrogram). As classifiers, two widely used ML models (support vector machine (SVM) and random forest (RF)) and two DL models (long short-term memory (LSTM) network and convolutional neural network (CNN) with 1-dimensional (1-D) and 2-dimensional (2-D) architectures) were used. These systems were trained using a small number of training samples from two popular databases of pathological voice (HUPA and SVD) to find the best feature/classifier combination for each database. As a result, one ML-based detection system (mel-spectrogram/SVM for HUPA and SVD) and two DL-based detection systems (dynamic MFCCs/2-D CNN for HUPA and mel-spectrogram/2-D CNN for SVD) were selected for the comparison of the DA methods. The results show that by using DA in the system training, detection accuracy increased compared to the baseline systems that were trained without using DA. This improvement in accuracy was, however, clearly larger for the 2D-CNN system than for the SVM system. Furthermore, all six DA methods improved accuracy of the 2-D CNN system compared to the baseline system for both databases. The highest improvements were achieved using the time-frequency domain SpecAugment DA method, which improved accuracy by 1.5% and 3.8% (absolute) for the HUPA and SVD database, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
12秒前
小冉完成签到 ,获得积分10
13秒前
16秒前
17秒前
kane发布了新的文献求助10
20秒前
Lllleen完成签到 ,获得积分10
20秒前
sunhhhh完成签到 ,获得积分10
24秒前
Sunny完成签到 ,获得积分10
24秒前
30秒前
wop111应助健康的修洁采纳,获得10
30秒前
科研通AI6应助科研通管家采纳,获得10
30秒前
从容海关注了科研通微信公众号
32秒前
sweetrumors完成签到,获得积分20
32秒前
谢文彤完成签到 ,获得积分10
32秒前
时超越关注了科研通微信公众号
33秒前
34秒前
TongKY完成签到 ,获得积分10
35秒前
汉堡包应助叫我陈老师啊采纳,获得10
36秒前
量子星尘发布了新的文献求助10
37秒前
赘婿应助kane采纳,获得10
38秒前
38秒前
42秒前
43秒前
YifanWang应助keeeeeeeli采纳,获得30
44秒前
Laurinda发布了新的文献求助10
48秒前
栗子完成签到,获得积分10
48秒前
栗子发布了新的文献求助10
50秒前
时超越发布了新的文献求助10
54秒前
一玥完成签到,获得积分10
56秒前
1分钟前
xunanlei完成签到,获得积分10
1分钟前
1分钟前
liv发布了新的文献求助10
1分钟前
wop111应助从容海采纳,获得10
1分钟前
1分钟前
阿治完成签到 ,获得积分0
1分钟前
Lee发布了新的文献求助10
1分钟前
1分钟前
mmyhn发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4900060
求助须知:如何正确求助?哪些是违规求助? 4180209
关于积分的说明 12976457
捐赠科研通 3944577
什么是DOI,文献DOI怎么找? 2163784
邀请新用户注册赠送积分活动 1182036
关于科研通互助平台的介绍 1087938