Rock-physics-guided machine learning for shear sonic log prediction

岩石物理学 机器学习 人工神经网络 测井 储层建模 物理定律 剪切(地质) 一般化 人工智能 计算机科学 地质学 数学 地球物理学 岩土工程 物理 数学分析 量子力学 岩石学 多孔性
作者
Luanxiao Zhao,Jingyu Liu,Minghui Xu,Zhenyu Zhu,Yuanyuan Chen,Jianhua Geng
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (1): D75-D87 被引量:2
标识
DOI:10.1190/geo2023-0152.1
摘要

The S-wave velocity ([Formula: see text]) is a vital parameter for various petrophysical, geophysical, and geomechanical applications in subsurface characterization. Nevertheless, obtaining shear sonic log is frequently challenging because of its high economic, time, and operating costs. Conventional methods for predicting [Formula: see text] rely on empirical relationships and rock-physics models, which often fall short in accuracy due to their inability to account for the complex factors influencing the relationship between [Formula: see text] and other parameters. We develop a physics-guided machine learning (ML) approach to predict the shear sonic log using various physical parameters (e.g., natural gamma ray, P-wave velocity, density, and resistivity) that can be readily obtained from standard logging suites. Three types of rock-physical constraints combined with three guidance strategies form the various physics-guided models. Specifically, the three constraint models include mudrock line, empirical P- and S-wave velocity relationship, and multiparameter regression from the logging data, and the three guidance strategies involve physics-guided pseudolabels, physics-guided loss function, and transfer learning. To assess the model’s generalization ability and simulate the lack of labeled data in real-world applications, a single well is used as a training well, whereas the remaining four wells are used to blind test in a clastic reservoir. Compared with supervised ML without any constraints, all models incorporating physical constraints demonstrate a significant improvement in prediction accuracy and generalization performance. This underscores the importance of integrating the first-order physical laws into the network training for shear sonic log prediction. The most successful approach combines the multiparameter regression relationship with the physics-guided pseudolabels in this case, resulting in a remarkable 47% reduction in the average root-mean-square error during the blind test.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吉他配三弦完成签到,获得积分10
1秒前
梧桐发布了新的文献求助10
3秒前
3秒前
star完成签到,获得积分10
4秒前
yeyeming完成签到,获得积分10
4秒前
科研不通完成签到,获得积分10
5秒前
慕青应助张学友采纳,获得10
6秒前
SYLH应助称心如意采纳,获得10
6秒前
LYB吕完成签到,获得积分10
6秒前
6秒前
研友_85YNe8完成签到,获得积分10
9秒前
科研通AI2S应助Pendragon采纳,获得10
9秒前
万能图书馆应助liuliu采纳,获得10
12秒前
iW完成签到 ,获得积分10
12秒前
ED应助科研通管家采纳,获得10
17秒前
ED应助科研通管家采纳,获得10
17秒前
lxlcx应助科研通管家采纳,获得20
17秒前
wsx4321应助科研通管家采纳,获得50
17秒前
柯一一应助科研通管家采纳,获得10
17秒前
丘比特应助科研通管家采纳,获得10
17秒前
17秒前
鱼秋完成签到,获得积分10
18秒前
秦月未完完成签到,获得积分10
18秒前
大方太清完成签到 ,获得积分10
18秒前
眼睛大寒松完成签到,获得积分10
19秒前
张学友发布了新的文献求助10
22秒前
深情安青应助Cwx2020采纳,获得10
27秒前
CipherSage应助汤圆圆儿采纳,获得10
27秒前
29秒前
华仔应助多多采纳,获得10
29秒前
我睡觉的时候不困完成签到 ,获得积分10
30秒前
共享精神应助梧桐采纳,获得10
30秒前
123完成签到,获得积分10
34秒前
dinhogj完成签到 ,获得积分10
34秒前
36秒前
37秒前
鲜榨白开水完成签到,获得积分10
37秒前
38秒前
岱岱发布了新的文献求助10
40秒前
40秒前
高分求助中
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Elephant Welfare in Global Tourism 500
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3898505
求助须知:如何正确求助?哪些是违规求助? 3442787
关于积分的说明 10828103
捐赠科研通 3167558
什么是DOI,文献DOI怎么找? 1750179
邀请新用户注册赠送积分活动 845790
科研通“疑难数据库(出版商)”最低求助积分说明 788882