亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Self-Supervised Seismic Data Interpolation via Frequency Extrapolation

外推法 插值(计算机图形学) 混叠 计算机科学 奈奎斯特频率 算法 缺少数据 奈奎斯特-香农抽样定理 滤波器(信号处理) 人工智能 深度学习 采样(信号处理) 模式识别(心理学) 数学 欠采样 计算机视觉 机器学习 图像(数学) 统计
作者
Tongtong Mo,X. Sun,Benfeng Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-9 被引量:4
标识
DOI:10.1109/tgrs.2023.3299284
摘要

Antialiasing seismic data interpolation algorithms can reconstruct sparse seismic data into dense data, which helps obtaining high-precision migration images and accurately locate reservoirs. Nonlinear seismic interpolation techniques based on deep learning (DL) have become popular in recent years. The majority of supervised techniques, however, depend on large volumes of labeled datasets, which are rarely available for field data interpolation. To overcome the limitations of the labeled data requirement in supervised learning, some unsupervised interpolation techniques, such as the well-known deep image prior (DIP), have been developed. However, these unsupervised techniques often have poor generalization. In order to avoid the complete labeled data requirement and achieve an accurate interpolation result efficiently, we propose a novel self-supervised interpolation via frequency extrapolation (SIFE) algorithm for regularly missing seismic data. The proposed SIFE mainly contains two steps: aliasing-free low-frequency complete data reconstruction via the Nyquist sampling theorem and high-frequency data recovery via self-supervised frequency extrapolation. In the first step, a low-frequency filter is adopted to obtain aliasing-free sparse data, which can be interpolated into dense low-frequency data via the Nyquist sampling theorem. In the second step, the low-frequency filtered observation data is mapped to its original full-band observed data via self-supervised learning for frequency extrapolation. After the training convergence, we can obtain an optimized network that can map the reconstructed low-frequency data at the missing locations to the corresponding full-band seismic data via frequency extrapolation, i.e., reconstructing the missing seismic traces. Numerical examples with synthetic and field data show the superiority of the proposed SIFE when compared with DIP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WebCasa发布了新的文献求助10
35秒前
李健的小迷弟应助huang采纳,获得10
54秒前
1分钟前
huang完成签到,获得积分10
1分钟前
WebCasa应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
huang发布了新的文献求助10
1分钟前
1分钟前
2分钟前
3分钟前
3分钟前
WebCasa应助科研通管家采纳,获得10
3分钟前
星辰大海应助科研通管家采纳,获得10
3分钟前
Forever完成签到,获得积分10
3分钟前
Ethan完成签到,获得积分10
3分钟前
石头完成签到 ,获得积分10
3分钟前
小郭发布了新的文献求助20
3分钟前
liuliqiong完成签到,获得积分10
4分钟前
5分钟前
5分钟前
深情安青应助科研通管家采纳,获得10
5分钟前
充电宝应助科研通管家采纳,获得10
5分钟前
搜集达人应助科研通管家采纳,获得10
7分钟前
7分钟前
7分钟前
丁三问发布了新的文献求助10
7分钟前
Arthur完成签到 ,获得积分10
7分钟前
丁三问完成签到,获得积分10
8分钟前
小蘑菇应助库里强采纳,获得10
8分钟前
8分钟前
silsotiscolor完成签到,获得积分10
9分钟前
10分钟前
Sunny完成签到,获得积分10
10分钟前
JamesPei应助无情中道采纳,获得10
10分钟前
11分钟前
无情中道发布了新的文献求助10
11分钟前
11分钟前
萝卜猪完成签到,获得积分10
11分钟前
11分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4118284
求助须知:如何正确求助?哪些是违规求助? 3656893
关于积分的说明 11577059
捐赠科研通 3359155
什么是DOI,文献DOI怎么找? 1845531
邀请新用户注册赠送积分活动 910827
科研通“疑难数据库(出版商)”最低求助积分说明 827070