亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Classification and prediction of Klebsiella pneumoniae strains with different MLST allelic profiles via SERS spectral analysis

多位点序列分型 肺炎克雷伯菌 打字 管家基因 生物 系统发育树 全基因组测序 微生物学 细菌基因组大小 计算生物学 基因组 遗传学 基因 基因型 大肠杆菌 基因表达
作者
Liyan Zhang,Benshun Tian,Yaoxing Huang,Gu B,Pei Ju,Yuyan Luo,Jia-Wei Tang,Liang Wang
出处
期刊:PeerJ [PeerJ, Inc.]
卷期号:11: e16161-e16161 被引量:1
标识
DOI:10.7717/peerj.16161
摘要

The Gram-negative non-motile Klebsiella pneuomoniae is currently a major cause of hospital-acquired (HA) and community-acquired (CA) infections, leading to great public health concern globally, while rapid identification and accurate tracing of the pathogenic bacterium is essential in facilitating monitoring and controlling of K. pneumoniae outbreak and dissemination. Multi-locus sequence typing (MLST) is a commonly used typing approach with low cost that is able to distinguish bacterial isolates based on the allelic profiles of several housekeeping genes, despite low resolution and labor intensity of the method. Core-genome MLST scheme (cgMLST) is recently proposed to sub-type and monitor outbreaks of bacterial strains with high resolution and reliability, which uses hundreds or thousands of genes conserved in all or most members of the species. However, the method is complex and requires whole genome sequencing of bacterial strains with high costs. Therefore, it is urgently needed to develop novel methods with high resolution and low cost for bacterial typing. Surface enhanced Raman spectroscopy (SERS) is a rapid, sensitive and cheap method for bacterial identification. Previous studies confirmed that classification and prediction of bacterial strains via SERS spectral analysis correlated well with MLST typing results. However, there is currently no similar comparative analysis in K. pneumoniae strains. In this pilot study, 16 K. pneumoniae strains with different sequencing typings (STs) were selected and a phylogenetic tree was constructed based on core genome analysis. SERS spectra (N = 45/each strain) were generated for all the K. pneumoniae strains, which were then comparatively classified and predicted via six representative machine learning (ML) algorithms. According to the results, SERS technique coupled with the ML algorithm support vector machine (SVM) could achieve the highest accuracy (5-Fold Cross Validation = 100%) in terms of differentiating and predicting all the K. pneumoniae strains that were consistent to corresponding MLSTs. In sum, we show in this pilot study that the SERS-SVM based method is able to accurately predict K. pneumoniae MLST types, which has the application potential in clinical settings for tracing dissemination and controlling outbreak of K. pneumoniae in hospitals and communities with low costs and high rapidity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助wafo采纳,获得10
2秒前
隐形曼青应助白日梦想家采纳,获得10
5秒前
喜悦向日葵完成签到 ,获得积分10
10秒前
23秒前
26秒前
明亮梦山完成签到 ,获得积分10
46秒前
科研通AI5应助天真的雁露采纳,获得10
47秒前
程曦完成签到 ,获得积分20
48秒前
粽子完成签到,获得积分10
1分钟前
1分钟前
1分钟前
wafo发布了新的文献求助10
1分钟前
可爱的函函应助好耶采纳,获得30
1分钟前
1分钟前
小郭发布了新的文献求助10
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
1分钟前
开心每一天完成签到 ,获得积分10
1分钟前
科研通AI5应助qiuqiutantan采纳,获得20
2分钟前
2分钟前
2分钟前
不打烊吗发布了新的文献求助30
2分钟前
小郭完成签到,获得积分10
2分钟前
远方完成签到,获得积分10
2分钟前
不打烊吗完成签到,获得积分20
2分钟前
2分钟前
Noob_saibot完成签到,获得积分10
2分钟前
2分钟前
qiuqiutantan发布了新的文献求助20
2分钟前
2分钟前
好耶发布了新的文献求助30
2分钟前
猪猪hero应助远方采纳,获得10
2分钟前
3分钟前
夕诙应助程曦采纳,获得30
3分钟前
所所应助不打烊吗采纳,获得30
3分钟前
3分钟前
3分钟前
3分钟前
橙子发布了新的文献求助10
3分钟前
3分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808017
求助须知:如何正确求助?哪些是违规求助? 3352716
关于积分的说明 10360009
捐赠科研通 3068716
什么是DOI,文献DOI怎么找? 1685237
邀请新用户注册赠送积分活动 810332
科研通“疑难数据库(出版商)”最低求助积分说明 766033