亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Classification and prediction of Klebsiella pneumoniae strains with different MLST allelic profiles via SERS spectral analysis

多位点序列分型 肺炎克雷伯菌 打字 管家基因 生物 系统发育树 全基因组测序 微生物学 细菌基因组大小 计算生物学 基因组 遗传学 基因 基因型 大肠杆菌 基因表达
作者
Liyan Zhang,Benshun Tian,Yuan-Hong Huang,B. X. Gu,Pei Ju,Yanfei Luo,Jia-Wei Tang,Liang Wang
出处
期刊:PeerJ [PeerJ]
卷期号:11: e16161-e16161 被引量:13
标识
DOI:10.7717/peerj.16161
摘要

The Gram-negative non-motile Klebsiella pneuomoniae is currently a major cause of hospital-acquired (HA) and community-acquired (CA) infections, leading to great public health concern globally, while rapid identification and accurate tracing of the pathogenic bacterium is essential in facilitating monitoring and controlling of K. pneumoniae outbreak and dissemination. Multi-locus sequence typing (MLST) is a commonly used typing approach with low cost that is able to distinguish bacterial isolates based on the allelic profiles of several housekeeping genes, despite low resolution and labor intensity of the method. Core-genome MLST scheme (cgMLST) is recently proposed to sub-type and monitor outbreaks of bacterial strains with high resolution and reliability, which uses hundreds or thousands of genes conserved in all or most members of the species. However, the method is complex and requires whole genome sequencing of bacterial strains with high costs. Therefore, it is urgently needed to develop novel methods with high resolution and low cost for bacterial typing. Surface enhanced Raman spectroscopy (SERS) is a rapid, sensitive and cheap method for bacterial identification. Previous studies confirmed that classification and prediction of bacterial strains via SERS spectral analysis correlated well with MLST typing results. However, there is currently no similar comparative analysis in K. pneumoniae strains. In this pilot study, 16 K. pneumoniae strains with different sequencing typings (STs) were selected and a phylogenetic tree was constructed based on core genome analysis. SERS spectra (N = 45/each strain) were generated for all the K. pneumoniae strains, which were then comparatively classified and predicted via six representative machine learning (ML) algorithms. According to the results, SERS technique coupled with the ML algorithm support vector machine (SVM) could achieve the highest accuracy (5-Fold Cross Validation = 100%) in terms of differentiating and predicting all the K. pneumoniae strains that were consistent to corresponding MLSTs. In sum, we show in this pilot study that the SERS-SVM based method is able to accurately predict K. pneumoniae MLST types, which has the application potential in clinical settings for tracing dissemination and controlling outbreak of K. pneumoniae in hospitals and communities with low costs and high rapidity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
taffysl完成签到,获得积分10
11秒前
sunshineboy发布了新的文献求助10
13秒前
30秒前
35秒前
40秒前
科研通AI6.1应助mrhughas采纳,获得10
47秒前
49秒前
ajing发布了新的文献求助10
53秒前
科研通AI6应助科研通管家采纳,获得10
57秒前
科研通AI6应助科研通管家采纳,获得10
57秒前
VDC应助科研通管家采纳,获得10
57秒前
VDC应助科研通管家采纳,获得10
57秒前
VDC应助科研通管家采纳,获得10
57秒前
VDC应助科研通管家采纳,获得10
57秒前
科研通AI6应助科研通管家采纳,获得10
57秒前
科研通AI6应助科研通管家采纳,获得10
57秒前
科研通AI6应助科研通管家采纳,获得10
58秒前
1分钟前
fdu_sf发布了新的文献求助10
1分钟前
1分钟前
1分钟前
mrhughas发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
Koala04发布了新的文献求助10
1分钟前
共享精神应助抹茶采纳,获得10
1分钟前
mrhughas完成签到,获得积分10
2分钟前
田様应助张尧摇摇摇采纳,获得10
2分钟前
2分钟前
2分钟前
Koala04完成签到,获得积分10
2分钟前
2分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780479
求助须知:如何正确求助?哪些是违规求助? 5656040
关于积分的说明 15453184
捐赠科研通 4911071
什么是DOI,文献DOI怎么找? 2643267
邀请新用户注册赠送积分活动 1590941
关于科研通互助平台的介绍 1545457