Re-tear after arthroscopic rotator cuff tear surgery: risk analysis using machine learning

医学 肩袖 眼泪 接收机工作特性 外科 磁共振成像 放射科 内科学
作者
Issei Shinohara,Yutaka Mifune,Atsuyuki Inui,Hanako Nishimoto,Tomoya Yoshikawa,Tatsuo Kato,Takahiro Furukawa,Shuya Tanaka,Masaya Kusunose,Yuichi Hoshino,Takehiko Matsushita,Makoto Mitani,Ryosuke Kuroda
出处
期刊:Journal of Shoulder and Elbow Surgery [Elsevier BV]
卷期号:33 (4): 815-822 被引量:7
标识
DOI:10.1016/j.jse.2023.07.017
摘要

Background

Postoperative rotator cuff retear after arthroscopic rotator cuff repair (ARCR) is still a major problem. Various risk factors such as age, gender, and tear size have been reported. Recently, magnetic resonance imaging-based stump classification was reported as an index of rotator cuff fragility. Although stump type 3 is reported to have a high retear rate, there are few reports on the risk of postoperative retear based on this classification. Machine learning (ML), an artificial intelligence technique, allows for more flexible predictive models than conventional statistical methods and has been applied to predict clinical outcomes. In this study, we used ML to predict postoperative retear risk after ARCR.

Methods

The retrospective case-control study included 353 patients who underwent surgical treatment for complete rotator cuff tear using the suture-bridge technique. Patients who initially presented with retears and traumatic tears were excluded. In study participants, after the initial tear repair, rotator cuff retears were diagnosed by magnetic resonance imaging; Sugaya classification types IV and V were defined as re-tears. Age, gender, stump classification, tear size, Goutallier classification, presence of diabetes, and hyperlipidemia were used for ML parameters to predict the risk of retear. Using Python's Scikit-learn as an ML library, five different AI models (logistic regression, random forest, AdaBoost, CatBoost, LightGBM) were trained on the existing data, and the prediction models were applied to the test dataset. The performance of these ML models was measured by the area under the receiver operating characteristic curve. Additionally, key features affecting retear were evaluated.

Results

The area under the receiver operating characteristic curve for logistic regression was 0.78, random forest 0.82, AdaBoost 0.78, CatBoost 0.83, and LightGBM 0.87, respectively for each model. LightGBM showed the highest score. The important factors for model prediction were age, stump classification, and tear size.

Conclusions

The ML classifier model predicted retears after ARCR with high accuracy, and the AI model showed that the most important characteristics affecting retears were age and imaging findings, including stump classification. This model may be able to predict postoperative rotator cuff retears based on clinical features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助怕黑的擎采纳,获得10
1秒前
1秒前
1秒前
wcy完成签到 ,获得积分10
2秒前
2秒前
科研通AI2S应助是小明啦采纳,获得10
4秒前
4秒前
舒心平蝶完成签到 ,获得积分10
5秒前
Lili发布了新的文献求助10
5秒前
aaaa完成签到,获得积分10
6秒前
pluto应助HUangg采纳,获得10
6秒前
开朗若雁发布了新的文献求助10
6秒前
王先生完成签到,获得积分10
7秒前
7秒前
CodeCraft应助温良采纳,获得10
8秒前
摸俞发布了新的文献求助10
9秒前
香蕉觅云应助夜曲采纳,获得10
9秒前
12秒前
夏目发布了新的文献求助10
12秒前
叽里呱啦完成签到,获得积分20
15秒前
月亮完成签到,获得积分10
15秒前
cff完成签到 ,获得积分10
16秒前
17秒前
余味应助自然尔琴采纳,获得10
20秒前
20秒前
21秒前
mz完成签到 ,获得积分10
21秒前
夏目完成签到,获得积分10
22秒前
SYLH应助涵泽采纳,获得10
22秒前
shuang0116应助涵泽采纳,获得10
22秒前
qwp应助涵泽采纳,获得10
22秒前
tongzehui发布了新的文献求助10
23秒前
夜曲发布了新的文献求助10
24秒前
抹茶冰淇淋完成签到 ,获得积分10
27秒前
贺万万发布了新的文献求助10
29秒前
bkagyin应助执着的忆雪采纳,获得10
29秒前
29秒前
Hyp完成签到 ,获得积分10
30秒前
Lili完成签到,获得积分20
31秒前
十三完成签到 ,获得积分10
31秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801430
求助须知:如何正确求助?哪些是违规求助? 3347140
关于积分的说明 10332081
捐赠科研通 3063446
什么是DOI,文献DOI怎么找? 1681691
邀请新用户注册赠送积分活动 807670
科研通“疑难数据库(出版商)”最低求助积分说明 763843