亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identifying Associations between Small Nucleolar RNAs and Diseases via Graph Convolutional Network and Attention Mechanism

小核仁RNA 计算机科学 机制(生物学) 卷积神经网络 生物网络 图形 计算生物学 人工智能 理论计算机科学 生物 长非编码RNA 核糖核酸 遗传学 基因 认识论 哲学
作者
Shuchen Liu,Wen Zhu,Peng Wang,Shaoyou Yu,Fang‐Xiang Wu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (12): 7647-7658 被引量:3
标识
DOI:10.1109/jbhi.2024.3424848
摘要

Research has shown that small nucleolar RNAs (snoRNAs) play crucial roles in various biological processes, and understanding disease pathogenesis by studying their relationship with diseases is beneficial. Currently, known associations are insufficient, and conventional biological experiments are costly and time-consuming. Therefore, developing efficient computational methods is crucial for identifying potential snoRNA-disease associations. In this paper, a method to identify snoRNA-disease associations based on graph convolutional network and multi-view graph attention mechanism (GCASDA) is proposed. Firstly, the similarity matrices of snoRNAs and diseases are calculated based on biological entity-related information, and the weights of the edges between the snoRNA nodes and the disease nodes are supplemented by random forest. Then two homogeneous graphs and one heterogeneous graph are constructed. Subsequently, different types of embedded features are extracted from the graphs using specific graph convolutional network structure and integrated through a multi-view graph attention mechanism to obtain node embedded feature representations. Finally, for each pair of nodes, in addition to their global features, node interaction features are passed together to a multilayer perceptron neural network (MLP) to identify snoRNA-disease associations. Experimental results show that GCASDA achieves 0.9356 and 0.9294 in AUC and AUPR, respectively, and significantly outperformed other state-of-the-art methods on the basis of different evaluation metrics. Furthermore, the case study could further demonstrate the realistic feasibility of GCASDA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
不知道完成签到 ,获得积分10
1秒前
7秒前
8秒前
奋斗洋葱发布了新的文献求助10
10秒前
12秒前
stubborn_cat发布了新的文献求助10
15秒前
17秒前
20秒前
我是废物发布了新的文献求助10
24秒前
29秒前
量子星尘发布了新的文献求助10
35秒前
孙杰发布了新的文献求助30
40秒前
45秒前
SciGPT应助孙杰采纳,获得10
1分钟前
zzgpku完成签到,获得积分0
1分钟前
1分钟前
1分钟前
1分钟前
害怕的不评完成签到,获得积分10
1分钟前
stubborn_cat关注了科研通微信公众号
1分钟前
pkuheidelberg发布了新的文献求助10
1分钟前
1分钟前
英姑应助奋斗洋葱采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
pkuheidelberg完成签到,获得积分10
2分钟前
3分钟前
叽里呱啦完成签到 ,获得积分10
3分钟前
凯文完成签到 ,获得积分10
3分钟前
stubborn_cat完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
赘婿应助科研通管家采纳,获得10
3分钟前
NexusExplorer应助科研通管家采纳,获得10
3分钟前
3分钟前
灰色白面鸮完成签到,获得积分10
4分钟前
5分钟前
5分钟前
Wei发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助20
5分钟前
欣欣完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
塔里木盆地肖尔布拉克组微生物岩沉积层序与储层成因 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4270137
求助须知:如何正确求助?哪些是违规求助? 3800669
关于积分的说明 11910793
捐赠科研通 3447577
什么是DOI,文献DOI怎么找? 1890974
邀请新用户注册赠送积分活动 941733
科研通“疑难数据库(出版商)”最低求助积分说明 845832