Tensorized and Compressed Multi-view Subspace Clustering via Structured Constraint

计算机科学 聚类分析 约束(计算机辅助设计) 子空间拓扑 机器学习 数据挖掘 冗余(工程) 局部一致性 理论计算机科学 离群值 特征学习 模式识别(心理学) 人工智能 约束满足问题 概率逻辑 数学 操作系统 几何学
作者
Wei Chang,Huimin Chen,Feiping Nie,Rong Wang,Xuelong Li
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (12): 10434-10451 被引量:1
标识
DOI:10.1109/tpami.2024.3446537
摘要

Multi-view learning has raised more and more attention in recent years. However, traditional approaches only focus on the difference while ignoring the consistency among views. It may make some views, with the situation of data abnormality or noise, ineffective in the progress of view learning. Besides, the current datasets have become high-dimensional and large-scale gradually. Therefore, this paper proposes a novel multi-view compressed subspace learning method via low-rank tensor constraint, which incorporates the clustering progress and multi-view learning into a unified framework. First, for each view, we take the partial samples to build a small-size dictionary, which can reduce the effect of both redundancy information and computation cost greatly. Then, to find the consistency and difference among views, we impose a low-rank tensor constraint on these representations and further design an auto-weighted mechanism to learn the optimal representation. Last, due to the non-square of the learned representation, the bipartite graph has been introduced, and under the structured constraint, the clustering results can be obtained directly from this graph without any post-processing. Extensive experiments on synthetic and real-world benchmark datasets demonstrate the efficacy and efficiency of our method, especially for the views with noise or outliers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姜黎完成签到,获得积分10
4秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
bc应助科研通管家采纳,获得20
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
爆米花应助11886采纳,获得30
6秒前
完美世界应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
可靠的雪青完成签到 ,获得积分10
7秒前
古娜拉发布了新的文献求助10
8秒前
SciGPT应助啦啦啦采纳,获得10
8秒前
聪慧火龙果完成签到,获得积分10
9秒前
Shelby发布了新的文献求助10
9秒前
10秒前
现代哑铃发布了新的文献求助10
10秒前
李爱国应助大魁采纳,获得10
11秒前
11秒前
12秒前
懦弱的难摧完成签到,获得积分10
12秒前
科研通AI5应助zln采纳,获得10
13秒前
15秒前
科目三应助zzmerry采纳,获得20
16秒前
www发布了新的文献求助10
17秒前
Shelby完成签到,获得积分10
18秒前
ysx完成签到 ,获得积分10
19秒前
英勇冥王星完成签到 ,获得积分10
22秒前
现代哑铃完成签到,获得积分10
22秒前
李健的粉丝团团长应助xh采纳,获得10
22秒前
今后应助ling采纳,获得10
24秒前
LikeX完成签到,获得积分20
25秒前
Matthew_G完成签到,获得积分10
26秒前
田様应助平淡的翅膀采纳,获得20
26秒前
27秒前
27秒前
锅得缸完成签到,获得积分10
30秒前
Yi完成签到,获得积分10
30秒前
LikeX发布了新的文献求助10
31秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
Effects of Receptive Music Therapy Combined with Virtual Reality on Prevalent Symptoms in Patients with Advanced Cancer 282
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811277
求助须知:如何正确求助?哪些是违规求助? 3355696
关于积分的说明 10377245
捐赠科研通 3072493
什么是DOI,文献DOI怎么找? 1687627
邀请新用户注册赠送积分活动 811691
科研通“疑难数据库(出版商)”最低求助积分说明 766762