Low-Energy Dissipation Diamond MEMS

微电子机械系统 材料科学 钻石 微电子 谐振器 光电子学 纳米技术 机械能 消散 工程物理 物理 复合材料 量子力学 热力学 功率(物理)
作者
Guo Chen,Satoshi Koizumi,Yasuo Koide,Meiyong Liao
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:5 (9): 1087-1096 被引量:3
标识
DOI:10.1021/accountsmr.4c00139
摘要

ConspectusMicroelectromechanical systems (MEMS) that integrate tiny mechanical devices with electronics on a semiconductor substate have experienced explosive growth over the past decades. MEMS have a range of wide applications from accelerometers and gyroscopes in automotive safety, to precise reference oscillators in consumer electrons to probes in atomic force microscopy and sensors for gravitational wave detection. The quality (Q)-factor is a fundamental parameter of a MEMS resonator that determines the sensitivity, noise level, energy efficiency, and stability of the device. MEMS with low energy dissipation have always been pursued. Despite the brilliant progress of silicon-based MEMS due to the mature technology in counterpart microelectronics, the intrinsic material properties limit the sensitivity and reliability, especially for the applications under extreme conditions. Diamond has emerged as the ideal semiconductor material for low-energy dissipation MEMS with high performance and high reliability, owing to its unparalleled material properties, such as extremely high mechanical strength, superelectrical properties, highest thermal conductivity, and chemical inertness. Diamond resonators are thus expected to exhibit high Q-factors, and high reliability, with low thermomechanical force noise and long coherence rate of mechanical quantum states, not only improving the performance of MEMS devices but also expanding to the quantum domain. Single-crystal diamond (SCD) is desirable to achieve the ultralow energy loss or high Q-factor MEMS resonator due to the nonexistence of grain boundaries and other carbon phases. However, micromachining for SCD is tough and heteroepitaxial growth of SCD on foreign substrates remains quite difficult.In this Account, we provide an overview of the recent research and strategies in SCD diamond MEMS for achieving high Q-factors, focusing on those fabricated by the smart-cut method developed in our lab. We start with the concept of diamond MEMS, covering structure fabrication, fundamentals, and applications. A comprehensive discussion of the energy dissipation mechanisms on the Q-factors in diamond MEMS resonators is provided. The approaches to enhance the Q-factor of diamond resonators including (1) the growth of high crystal quality SCD epilayer on the ion-implanted substrate, (2) defects engineering, and (3) strain engineering by thinning the resonator to around 100 nm thick are presented. In the smart-cut method, the ∼100 nm thick defective layer contributes to the main intrinsic energy loss. By combing the growth of a high crystal quality diamond epilayer above the defective layer and the atomic scale etching of the defective layer, the Q-factors could be improved from thousands to over one million at room temperature, the highest among all the semiconductors. The intrinsic high Q-factors of SCD MEMS are also due to the well-controlled purity of the diamond epilayer and the ultrawide bandgap energy of diamond. Through strain engineering of the SCD MEMS beam to nanoscale, the Q-factor is expected to be further enhanced. These strategies represent pivotal steps in advancing the performance and applicability of diamond MEMS resonators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
张永媚发布了新的文献求助10
2秒前
kelly发布了新的文献求助10
3秒前
6秒前
共享精神应助非而者厚采纳,获得10
6秒前
guoxihan完成签到 ,获得积分10
7秒前
guoxihan完成签到 ,获得积分10
7秒前
火星上的枕头完成签到 ,获得积分10
7秒前
梁漂亮完成签到 ,获得积分10
7秒前
11秒前
12秒前
搜集达人应助qd采纳,获得10
15秒前
17秒前
19秒前
23秒前
23秒前
25秒前
qd发布了新的文献求助10
28秒前
28秒前
8R60d8应助科研通管家采纳,获得10
34秒前
34秒前
SYLH应助科研通管家采纳,获得30
34秒前
wanci应助科研通管家采纳,获得10
34秒前
Yc应助科研通管家采纳,获得10
34秒前
8R60d8应助科研通管家采纳,获得10
34秒前
科研通AI5应助科研通管家采纳,获得10
34秒前
科研通AI5应助科研通管家采纳,获得10
34秒前
Singularity应助科研通管家采纳,获得10
34秒前
康康发布了新的文献求助10
34秒前
顾矜应助科研通管家采纳,获得10
34秒前
8R60d8应助科研通管家采纳,获得10
34秒前
8R60d8应助科研通管家采纳,获得10
34秒前
34秒前
Akim应助科研通管家采纳,获得10
34秒前
34秒前
地表飞猪应助科研通管家采纳,获得10
35秒前
36秒前
39秒前
herococa发布了新的文献求助150
41秒前
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777155
求助须知:如何正确求助?哪些是违规求助? 3322546
关于积分的说明 10210686
捐赠科研通 3037911
什么是DOI,文献DOI怎么找? 1666970
邀请新用户注册赠送积分活动 797884
科研通“疑难数据库(出版商)”最低求助积分说明 758059