HKFGCN: A novel multiple kernel fusion framework on graph convolutional network to predict microbe-drug associations

计算机科学 生物网络 核(代数) 图形 图形核 药物发现 二部图 人工智能 数据挖掘 机器学习 计算生物学 核方法 理论计算机科学 生物信息学 支持向量机 生物 数学 径向基函数核 组合数学
作者
Ziyu Wu,Shasha Li,Lingyun Luo,Pingjian Ding
出处
期刊:Computational Biology and Chemistry [Elsevier BV]
卷期号:110: 108041-108041
标识
DOI:10.1016/j.compbiolchem.2024.108041
摘要

Accumulating clinical studies have consistently demonstrated that the microbes in the human body closely interact with the human host, actively participating in the regulation of drug effectiveness. Identifying the associations between microbes and drugs can facilitate the development of drug discovery, and microbes have become a new target in antimicrobial drug development. However, the discovery of microbe-drug associations relies on clinical or biological experiments, which are not only time-consuming but also financially burdensome. Thus, the utilization of computational methods to predict microbe-drug associations holds promise for reducing costs and enhancing the efficiency of biological experiments. Here, we introduce a new computational method, called HKFGCN (Heterogeneous information Kernel Fusion Graph Convolution Network), to predict the microbe-drug associations. Instead of extracting feature from a single network in previous studies, HKFGCN separately extracts topological information features from different networks, and further refines them by generating Gaussian kernel features. HKFGCN consists of three main steps. Firstly, we constructed two similarity networks and a microbe-drug association network based on numerous biological data. Second, we employed two types of encoders to extract features from these networks. Next, Gaussian kernel features were obtained from the drug and microbe features at each layer. Finally, we reconstructed the bipartite microbe-drug graph based on the learned representations. Experimental results demonstrate the excellent performance of the HKFGCN model across different datasets using the cross-validation scheme. Additionally, we conduced case studies on human immunodeficiency virus, and the results were corroborated by existing literatures. The prediction model's code is available at https://github.com/roll-of-bubble/HKFGCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活泼的面包完成签到 ,获得积分10
2秒前
2秒前
3秒前
赵鑫雅发布了新的文献求助10
5秒前
脑洞疼应助悲凉的睫毛膏采纳,获得10
5秒前
TheDing完成签到,获得积分10
5秒前
夜雨完成签到,获得积分10
9秒前
赵鑫雅完成签到,获得积分20
13秒前
15秒前
16秒前
零点零壹完成签到,获得积分10
16秒前
Lucas应助左丘绝山采纳,获得10
17秒前
17秒前
19秒前
十两发布了新的文献求助10
20秒前
淡淡夕阳发布了新的文献求助10
23秒前
23秒前
左丘绝山完成签到,获得积分10
25秒前
嘉悦的小狗博士完成签到,获得积分10
26秒前
27秒前
28秒前
岁月轮回发布了新的文献求助10
31秒前
开心的眼睛完成签到,获得积分10
31秒前
聪明静柏完成签到 ,获得积分10
32秒前
cherrychou完成签到,获得积分10
33秒前
37秒前
希望天下0贩的0应助111采纳,获得10
38秒前
cookie完成签到,获得积分10
40秒前
勇敢的小狗完成签到 ,获得积分10
41秒前
41秒前
44秒前
aqaqaqa完成签到,获得积分10
46秒前
情怀应助岁月轮回采纳,获得10
46秒前
YC_Kao完成签到,获得积分10
47秒前
47秒前
47秒前
念梦完成签到,获得积分10
47秒前
上官若男应助淡淡夕阳采纳,获得10
48秒前
小红的忧伤完成签到,获得积分10
48秒前
奔波儿灞发布了新的文献求助10
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779897
求助须知:如何正确求助?哪些是违规求助? 3325264
关于积分的说明 10222437
捐赠科研通 3040465
什么是DOI,文献DOI怎么找? 1668851
邀请新用户注册赠送积分活动 798805
科研通“疑难数据库(出版商)”最低求助积分说明 758563