A weakly supervised deep learning model integrating noncontrasted computed tomography images and clinical factors facilitates haemorrhagic transformation prediction after intravenous thrombolysis in acute ischaemic stroke patients

溶栓 医学 深度学习 人工智能 急性中风 并发症 放射科 冲程(发动机) 学习迁移 组织纤溶酶原激活剂 机器学习 内科学 心肌梗塞 计算机科学 机械工程 工程类
作者
Xiaoshuang Ru,Shi-Long Zhao,Weidao Chen,Jiangfen Wu,Ruize Yu,Dawei Wang,Mengxing Dong,Qiong Wu,Daoyong Peng,Yang Song
出处
期刊:Biomedical Engineering Online [BioMed Central]
卷期号:22 (1) 被引量:7
标识
DOI:10.1186/s12938-023-01193-w
摘要

Haemorrhage transformation (HT) is a serious complication of intravenous thrombolysis (IVT) in acute ischaemic stroke (AIS). Accurate and timely prediction of the risk of HT before IVT may change the treatment decision and improve clinical prognosis. We aimed to develop a deep learning method for predicting HT after IVT for AIS using noncontrast computed tomography (NCCT) images.We retrospectively collected data from 828 AIS patients undergoing recombinant tissue plasminogen activator (rt-PA) treatment within a 4.5-h time window (n = 665) or of undergoing urokinase treatment within a 6-h time window (n = 163) and divided them into the HT group (n = 69) and non-HT group (n = 759). HT was defined based on the criteria of the European Cooperative Acute Stroke Study-II trial. To address the problems of indiscernible features and imbalanced data, a weakly supervised deep learning (WSDL) model for HT prediction was constructed based on multiple instance learning and active learning using admission NCCT images and clinical information in addition to conventional deep learning models. Threefold cross-validation and transfer learning were performed to confirm the robustness of the network. Of note, the predictive value of the commonly used scales in clinics associated with NCCT images (i.e., the HAT and SEDAN score) was also analysed and compared to measure the feasibility of our proposed DL algorithms.Compared to the conventional DL and ML models, the WSDL model had the highest AUC of 0.799 (95% CI 0.712-0.883). Significant differences were observed between the WSDL model and five ML models (P < 0.05). The prediction performance of the WSDL model outperforms the HAT and SEDAN scores at the optimal operating point (threshold = 1.5). Further subgroup analysis showed that the WSDL model performed better for symptomatic intracranial haemorrhage (AUC = 0.833, F1 score = 0.909).Our WSDL model based on NCCT images had relatively good performance for predicting HT in AIS and may be suitable for assisting in clinical treatment decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ava应助研晓晓采纳,获得10
2秒前
2秒前
鲤鱼平安发布了新的文献求助10
2秒前
小巴发布了新的文献求助10
3秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
汉堡包应助余峥瑶采纳,获得30
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
CodeCraft应助科研通管家采纳,获得30
4秒前
5秒前
机智的Kiki完成签到,获得积分10
5秒前
啦啦啦发布了新的文献求助10
7秒前
Winfred完成签到,获得积分20
7秒前
陈陈陈发布了新的文献求助10
8秒前
好的发布了新的文献求助10
8秒前
善学以致用应助Winfred采纳,获得10
9秒前
小当家完成签到,获得积分10
11秒前
机智的凡梦完成签到,获得积分10
12秒前
13秒前
喵霸天下完成签到,获得积分10
16秒前
白云垛发布了新的文献求助10
17秒前
852应助香蕉茹妖采纳,获得10
18秒前
melina完成签到 ,获得积分10
18秒前
20秒前
FashionBoy应助1234567xjy采纳,获得10
21秒前
21秒前
21秒前
落寞依珊应助微笑的寒梦采纳,获得20
21秒前
wanci应助zhangmeimei采纳,获得10
24秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Databook of Solvents 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4135517
求助须知:如何正确求助?哪些是违规求助? 3672194
关于积分的说明 11610274
捐赠科研通 3367908
什么是DOI,文献DOI怎么找? 1850221
邀请新用户注册赠送积分活动 913687
科研通“疑难数据库(出版商)”最低求助积分说明 828775